×

Topology optimization of viscoelastic materials on damping and frequency of macrostructures. (English) Zbl 1440.74303

Summary: Damping and natural frequency are the most important characteristics for evaluating the performance of dynamic structures. This paper proposes a topology optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method to designing viscoelastic materials. This algorithm optimizes damping and natural frequency of macrostructures by tailoring microstructures of viscoelastic materials. The material microstructures are assumed to be composed of periodic unit cells (PUCs) and the effective properties of the PUC are extracted by the homogenization theory and further integrated into the analysis of the macroscopic structure. To improve the performance of dynamic structures, the inverse homogenization is conducted to seek the best distribution of the base materials within the PUC. Numerical examples are presented to demonstrate the effectiveness of the proposed algorithm, which optimizes the microstructures of viscoelastic cellular or composite materials for 2D and 3D structures.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Christensen, R., Theory of Viscoelasticity: An Introduction (2012), Elsevier
[2] Nakra, B., Vibration control with viscoelastic materials. III, Shock Vib. Digest, 16, 17-22 (1984)
[3] Kerwin, E. M., Damping of flexural waves by a constrained viscoelastic layer, J. Acoust. Soc. Am., 31, 952-962 (1959)
[4] Nashif, A. D.; Jones, D. I.; Henderson, J. P., Vibration Damping (1985), John Wiley & Sons
[5] Shen, I., Hybrid damping through intelligent constrained layer treatments, J. Vib. Acoust., 116, 341-349 (1994)
[6] Boudaoud, H.; Belouettar, S.; Daya, E. M.; Potier-Ferry, M., A numerical method for nonlinear complex modes with application to active-passive damped sandwich structures, Eng. Struct., 31, 284-291 (2009)
[7] Araújo, A. L.; Soares, C. M.; Soares, C. M., Finite element model for hybrid active-passive damping analysis of anisotropic laminated sandwich structures, J. Sandwich Struct. Mater., 12, 397-419 (2010)
[8] Araújo, A. L.; Mota Soares, C. M.; Mota Soares, C. A., A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures, Appl. Compos. Mater., 17, 529-542 (2010)
[9] Lifshitz, J.; Leibowitz, M., Optimal sandwich beam design for maximum viscoelastic damping, Int. J. Solids Struct., 23, 1027-1034 (1987) · Zbl 0618.73103
[10] Baz, A.; Ro, J., Optimum design and control of active constrained layer damping, J. Mech. Des., 117, 135-144 (1995)
[11] Plunkett, R.; Lee, C., Length optimization for constrained viscoelastic layer damping, J. Acoust. Soc. Am., 48, 150-161 (1970)
[12] Alam, N.; Asnani, N., Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers, J. Sound Vib., 97, 597-614 (1984)
[13] Lall, A.; Nakra, B.; Asnani, N., Optimum design of viscoelastically damped sandwich panels, Eng. Optim., 6, 197-205 (1983)
[14] Zheng, H.; Cai, C.; Tan, X., Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams, Comput. Struct., 82, 2493-2507 (2004)
[15] Zheng, H.; Cai, C.; Pau, G.; Liu, G., Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments, J. Sound Vib., 279, 739-756 (2005)
[16] Li, Z.; Liang, X., Vibro-acoustic analysis and optimization of damping structure with response surface method, Mater. Des., 28, 1999-2007 (2007)
[17] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[18] Zhou, M.; Rozvany, G., The COC algorithm, Part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 309-336 (1991)
[19] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer: Springer Berlin · Zbl 1059.74001
[20] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2013), Springer Science & Business Media · Zbl 1059.74001
[21] Huang, X.; Xie, Y. M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), John Wiley & Sons · Zbl 1279.90001
[22] Huang, X.; Xie, Y. M., A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim., 41, 671-683 (2010)
[23] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489-528 (2000) · Zbl 0994.74082
[24] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[25] Kang, Z.; Zhang, X.; Jiang, S.; Cheng, G., On topology optimization of damping layer in shell structures under harmonic excitations, Struct. Multidiscip. Optim., 46, 51-67 (2012) · Zbl 1274.74348
[26] Zhang, X.; Kang, Z., Topology optimization of damping layers for minimizing sound radiation of shell structures, J. Sound Vib., 332, 2500-2519 (2013)
[27] Zhang, X.; Kang, Z., Topology optimization of piezoelectric layers in plates with active vibration control, J. Intell. Mater. Syst. Struct., 25, 697-712 (2014)
[28] Zhang, X.; Kang, Z., Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control, Smart Mater. Struct., 24, 085024 (2015)
[29] Kim, S. Y.; Mechefske, C. K.; Kim, I. Y., Optimal damping layout in a shell structure using topology optimization, J. Sound Vib., 332, 2873-2883 (2013)
[30] Yamamoto, T.; Yamada, T.; Izui, K.; Nishiwaki, S., Optimal design of unconstrained damping material of a thin panel by using topology optimization, (INTER-NOISE and NOISE-CON Congress and Conference Proceedings (2014), Institute of Noise Control Engineering), 264-273
[31] El-Sabbagh, A.; Baz, A., Topology optimization of unconstrained damping treatments for plates, Eng. Optim., 46, 1153-1168 (2014)
[32] James, K. A.; Waisman, H., Topology optimization of viscoelastic structures using a time-dependent adjoint method, Comput. Methods Appl. Mech. Engrg., 285, 166-187 (2015) · Zbl 1423.74728
[33] Madeira, J. F.A.; Araújo, A. L.; Mota Soares, C. M., Multiobjective optimization of constrained layer damping treatments in composite plate structures, Mech. Adv. Mater. Struct., 24, 427-436 (2017)
[34] Lakes, R. S., High damping composite materials: effect of structural hierarchy, J. Compos. Mater., 36, 287-297 (2002)
[35] Lakes, R. S., Viscoelastic Materials (2009), Cambridge University Press
[36] Yi, Y.-M.; Park, S.-H.; Youn, S.-K., Asymptotic homogenization of viscoelastic composites with periodic microstructures, Int. J. Solids Struct., 35, 2039-2055 (1998) · Zbl 0933.74054
[37] Yi, Y.-M.; Park, S.-H.; Youn, S.-K., Design of microstructures of viscoelastic composites for optimal damping characteristics, Int. J. Solids Struct., 37, 4791-4810 (2000) · Zbl 1007.74066
[38] Prasad, J.; Diaz, A., Viscoelastic material design with negative stiffness components using topology optimization, Struct. Multidiscip. Optim., 38, 583-597 (2009)
[39] Chen, W.; Liu, S., Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus, Struct. Multidiscip. Optim., 50, 287-296 (2014)
[40] Andreasen, C. S.; Andreassen, E.; Jensen, J. S.; Sigmund, O., On the realization of the bulk modulus bounds for two-phase viscoelastic composites, J. Mech. Phys. Solids, 63, 228-241 (2014)
[41] Andreassen, E.; Jensen, J. S., Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials, Struct. Multidiscip. Optim., 49, 695-705 (2014)
[42] Huang, X.; Zhou, S. W.; Sun, G.; Li, G.; Xie, Y. M., Topology optimization for microstructures of viscoelastic composite materials, Comput. Methods Appl. Mech. Engrg., 283, 503-516 (2015) · Zbl 1423.74748
[43] Rodrigues, H.; Guedes, J. M.; Bendsoe, M., Hierarchical optimization of material and structure, Struct. Multidiscip. Optim., 24, 1-10 (2002)
[44] Huang, X.; Zhou, S. W.; Xie, Y. M.; Li, Q., Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput. Mater. Sci., 67, 397-407 (2013)
[45] Liu, L.; Yan, J.; Cheng, G., Optimum structure with homogeneous optimum truss-like material, Comput. Struct., 86, 1417-1425 (2008)
[46] Yan, J.; Cheng, G.d.; Liu, L., A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials, Int. J. Simul. Multidiscip. Des. Optim., 2, 259-266 (2008)
[47] Yan, X.; Huang, X.; Zha, Y.; Xie, Y. M., Concurrent topology optimization of structures and their composite microstructures, Comput. Struct., 133, 103-110 (2014)
[48] Yan, X.; Huang, X.; Sun, G.; Xie, Y. M., Two-scale optimal design of structures with thermal insulation materials, Compos. Struct., 120, 358-365 (2015)
[49] Hagiwara, I., Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming, JSME Int. J. C, 37, 667-677 (1994)
[50] Ma, Z. D.; Kikuchi, N.; Cheng, H.-C., Topological design for vibrating structures, Comput. Methods Appl. Mech. Engrg., 121, 259-280 (1995) · Zbl 0849.73045
[51] Pedersen, N. L., Maximization of eigenvalues using topology optimization, Struct. Multidiscip. Optim., 20, 2-11 (2000)
[52] Du, J.; Olhoff, N., Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Struct. Multidiscip. Optim., 34, 91-110 (2007) · Zbl 1273.74398
[53] Huang, X.; Zuo, Z. H.; Xie, Y. M., Evolutionary topological optimization of vibrating continuum structures for natural frequencies, Comput. Struct., 88, 357-364 (2010)
[54] Liu, Q.; Chan, R.; Huang, X., Concurrent topology optimization of macrostructures and material microstructures for natural frequency, Mater. Des., 106, 380-390 (2016)
[55] Andreassen, E.; Jensen, J. S., A practical multiscale approach for optimization of structural damping, Struct. Multidiscip. Optim., 53, 215-224 (2016)
[56] Chen, W.; Liu, S., Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures, Struct. Multidiscip. Optim., 53, 1-14 (2016)
[57] Yoon, G. H., Structural topology optimization for frequency response problem using model reduction schemes, Comput. Methods Appl. Mech. Engrg., 199, 1744-1763 (2010) · Zbl 1231.74366
[58] Christensen, R. M.; Freund, L., Theory of viscoelasticity, J. Appl. Mech., 38, 720 (1971)
[59] Cremer, L.; Heckl, M., Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies (2013), Springer Science & Business Media
[60] Daya, E.; Potier-Ferry, M., A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures, Comput. Struct., 79, 533-541 (2001)
[61] Huang, X.; Xie, Y. M., Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput. Mech., 43, 393-401 (2009) · Zbl 1162.74425
[62] Huang, X.; Xie, Y. M., Evolutionary topology optimization of continuum structures with an additional displacement constraint, Struct. Multidiscip. Optim., 40, 409-416 (2010) · Zbl 1274.74343
[63] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Multidiscip. Optim., 16, 68-75 (1998)
[64] Huang, X.; Xie, Y. M., Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 1039-1049 (2007)
[65] Huang, X.; Radman, A.; Xie, Y. M., Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., 50, 1861-1870 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.