×

zbMATH — the first resource for mathematics

On the \(\mathrm{PSL}_2(\mathbb{F}_{19})\)-invariant cubic sevenfold. (English) Zbl 1295.11068
Summary: It has been proved by A. Adler [J. Algebra 72, 146–165 (1981; Zbl 0479.20020)] that there exists a unique cubic hypersurface \(X^7\) in \(\mathbb{P}^8\) which is invariant under the action of the simple group \(\mathrm{PSL}_2(\mathbb{F}_{19})\). In the present note we study the intermediate Jacobian of \(X^7\) and in particular we prove that the subjacent 85-dimensional torus is an Abelian variety. The symmetry group \(G = \mathrm{PSL}_2(\mathbb{F}_{19})\) defines uniquely a \(G\)-invariant Abelian 9-fold \(A(X^7)\), which we study in detail and describe its period lattice.
MSC:
11G10 Abelian varieties of dimension \(> 1\)
14J50 Automorphisms of surfaces and higher-dimensional varieties
14J70 Hypersurfaces and algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adler, A., On the automorphism group of certain hypersurfaces, J. Algebra, 72, 1, 146-165, (1981) · Zbl 0479.20020
[2] Albano, A.; Collino, A., On the Griffiths group of the cubic sevenfold, Math. Ann., 299, 715-726, (1994) · Zbl 0803.14022
[3] Beauville, A., Non-rationality of the symmetric sextic Fano threefold, (Geometry and Arithmetic, (2012), EMS Congress Reports), 57-60 · Zbl 1317.14033
[4] Beauville, A., Non-rationality of the \(S_6\)-symmetric quartic threefolds · Zbl 1327.14220
[5] Birkenhake, C.; Lange, H., Complex abelian varieties, Grundlehren Math. Wiss., vol. 302, (2004), Springer · Zbl 1056.14063
[6] Candelas, P.; de la Ossa, X.; van Geemen, B.; van Straten, D., Lines on the dwork pencil of quintic threefolds · Zbl 1279.14050
[7] Carlson, J.; Green, M.; Griffiths, P.; Harris, J., Infinitesimal variation of Hodge structure I, Compos. Math., 50, 2-3, 109-205, (1983) · Zbl 0531.14006
[8] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of finite groups, (1985), Oxford University Press, xxxiv+252 pp · Zbl 0568.20001
[9] Fulton, W.; Harris, J., Representation theory. A first course, Grad. Texts in Math., vol. 129, (1991), Springer-Verlag New York · Zbl 0744.22001
[10] Iliev, A.; Manivel, L., Fano manifolds of Calabi-Yau type · Zbl 1314.14085
[11] Klein, F., Uber die transformation elfter ordnung der elliptischen functionen, Math. Ann., 15, 3, 533-555, (1879) · JFM 11.0299.06
[12] Macdonald, I. G., Symmetric functions and Hall polynomials, (1995), Oxford University Press New York, x+475 pp. With contributions by A. Zelevinsky · Zbl 0899.05068
[13] Masley, J., Solution of the class number two problem for cyclotomic fields, Invent. Math., 28, 243-244, (1975) · Zbl 0288.12005
[14] Pulay, P.; Zhou, X.-F., Characters for symmetric and antisymmetric higher powers of representations: application to the number of anharmonic force constants in symmetrical molecules, J. Comput. Chem., 10, 935-938, (1989)
[15] Roulleau, X., The Fano surface of the Klein cubic threefold, J. Math. Kyoto Univ., 49, 1, 113-129, (2009) · Zbl 1207.14045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.