×

zbMATH — the first resource for mathematics

Essential factors influencing tunneling giant magnetoresistance of granular films. (English) Zbl 1130.82351
Summary: A series of ferromagnetic-insulator granular films were prepared at room temperature with a spc350 multi-target magnetron controlled sputtering system and all of the tunneling giant magnetoresistences were measured with the conventional four probes method. Experimental results revealed that TMR depends strongly on the magnetic granule, matrix and the size distribution of magnetic granules. Accordingly, a modified phenomenological theory is presented to investigate comprehensively the effect of the magnetic granule, matrix and the size distribution of magnetic granules on the TMR. In this theory, the size distribution of granules was described by the log-normal function and all granules can be divided into three categories which have different contributions on TMR by two critical sizes: \(D_{1}(T)\) as the critical size distinguishing superparamagnetic granules from single domain ferromagnetic granules and \(D_{2}(T)\) as the critical size distinguishing the single domain from the multi-domain. The calculated results, including TMR versus applied magnetic field, measured temperature, granule size or volume fraction, are in agreement with the experiments when the single domain ferromagnetic granules play a key role in TMR for granular films, which indicates that our modified model is reasonable.
Reviewer: Reviewer (Berlin)
MSC:
82D40 Statistical mechanical studies of magnetic materials
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.68.3745 · doi:10.1103/PhysRevLett.68.3745
[2] DOI: 10.1103/PhysRevLett.68.3749 · doi:10.1103/PhysRevLett.68.3749
[3] DOI: 10.1103/PhysRevB.60.14821 · doi:10.1103/PhysRevB.60.14821
[4] DOI: 10.1063/1.368443 · doi:10.1063/1.368443
[5] DOI: 10.1103/PhysRevB.5.3609 · doi:10.1103/PhysRevB.5.3609
[6] DOI: 10.1103/PhysRevLett.37.1429 · doi:10.1103/PhysRevLett.37.1429
[7] DOI: 10.1103/PhysRevLett.81.2799 · doi:10.1103/PhysRevLett.81.2799
[8] DOI: 10.1103/PhysRevB.60.11918 · doi:10.1103/PhysRevB.60.11918
[9] DOI: 10.1016/0921-5107(94)08032-1 · doi:10.1016/0921-5107(94)08032-1
[10] DOI: 10.1103/PhysRevB.53.R11927 · doi:10.1103/PhysRevB.53.R11927
[11] DOI: 10.1103/PhysRevLett.76.475 · doi:10.1103/PhysRevLett.76.475
[12] DOI: 10.1016/0304-8853(95)00613-3 · doi:10.1016/0304-8853(95)00613-3
[13] DOI: 10.1016/S0375-9601(99)00345-X · doi:10.1016/S0375-9601(99)00345-X
[14] DOI: 10.1002/pssa.2211500115 · doi:10.1002/pssa.2211500115
[15] DOI: 10.1016/j.jmmm.2003.10.033 · doi:10.1016/j.jmmm.2003.10.033
[16] DOI: 10.1103/PhysRevB.7.318 · doi:10.1103/PhysRevB.7.318
[17] DOI: 10.1016/S0304-8853(99)00515-6 · doi:10.1016/S0304-8853(99)00515-6
[18] DOI: 10.1088/0022-3727/35/19/317 · doi:10.1088/0022-3727/35/19/317
[19] Zhao B., Physica A 367 pp 241–
[20] Honda S., J. Magn. Magn. Mater. 153 pp 165–
[21] DOI: 10.1016/0304-8853(94)01012-9 · doi:10.1016/0304-8853(94)01012-9
[22] DOI: 10.1063/1.1480113 · doi:10.1063/1.1480113
[23] DOI: 10.1063/1.358505 · doi:10.1063/1.358505
[24] DOI: 10.1063/1.348946 · doi:10.1063/1.348946
[25] Sun H., Phys. Rev. B 64 pp 224413-1–
[26] DOI: 10.1103/PhysRevB.5.3609 · doi:10.1103/PhysRevB.5.3609
[27] W. D. Zhong, Ferromagnetism (Science Press, Beijing, 1987) p. 145.
[28] DOI: 10.1103/PhysRevB.56.14566 · doi:10.1103/PhysRevB.56.14566
[29] DOI: 10.1103/PhysRevLett.61.758 · doi:10.1103/PhysRevLett.61.758
[30] Zhu T., Acta Physica Sinica 48 pp 763–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.