×

Approximate reconstruction of bandlimited functions for the integrate and fire sampler. (English) Zbl 1262.94011

Summary: In this paper we study the reconstruction of a bandlimited signal from samples generated by the integrate and fire model. This sampler allows us to trade complexity in the reconstruction algorithms for simple hardware implementations, and is specially convenient in situations where the sampling device is limited in terms of power, area and bandwidth. Although perfect reconstruction for this sampler is impossible, we give a general approximate reconstruction procedure and bound the corresponding error. We also show the performance of the proposed algorithm through numerical simulations.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A20 Sampling theory in information and communication theory
41A30 Approximation by other special function classes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13(2), 151–161 (2002) · Zbl 1016.42022 · doi:10.1016/S1063-5203(02)00503-1
[2] Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001) · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[3] Alvarado, A., Principe, J., Harris, J.: Stimulus reconstruction from the biphasic integrate-and-fire sampler. In: 4th International IEEE/EMBS Conference on Neural Engineering, NER ’09, pp. 415–418 (2009). doi: 10.1109/NER.2009.5109321
[4] Chen, D., Li, Y., Xu, D., Harris, J., Principe, J.: Asynchronous biphasic pulse signal coding and its cmos realization. In: Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS 2006, pp. 2293–2296 (2006). doi: 10.1109/ISCAS.2006.1693079
[5] Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: B. Sz. Nagy, J. Szabados (eds.) Proc. Conf. on Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)
[6] Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Function Spaces, Proc Conf, Edwardsville/IL (USA) 1990, Lect. N otes Pure A ppl. Math., vol. 136, pp. 123–137. Marcel Dekker, New York (1992) · Zbl 0833.46030
[7] Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J., Frazier, M. (eds.) Wavelets: Mathematics and Applications, Studies in Advanced Mathematics, pp. 305–363. CRC Press, Boca Raton, FL (1994) · Zbl 1090.94524
[8] Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press (2002) · Zbl 1100.92501
[9] Lazar, A.A., Pnevmatikakis, E.A.: Reconstruction of sensory stimuli encoded with integrate-and-fire neurons with random thresholds. EURASTP J. Appl. Signal Process. 2009 (2009). doi: 10.1155/2009/682930 · Zbl 1184.68408
[10] Lazar, A.A., Simonyi, E.K., Toth, L.T.: A Toeplitz formulation of a real-time algorithm for time decoding machines. In: Proceedings of the Conference on Telecommunication Systems, Modeling and Analysis (2005)
[11] Lazar, A.A., Toth, L.T.: Time encoding and perfect recovery of bandlimited signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 6, pp. VI709–712 (2003). doi: 10.1109/ICASSP.2003.1201780
[12] Rieke, F., Warland, D., de Ruyter, Bialek, W.: Spikes: Exploring the Neural Code. The MIT Press (1997) · Zbl 0912.92004
[13] Sanchez, J.C., Principe, J.C., Nishida, T., Bashirullah, R., Harris, J.G., Fortes, J.A.B.: Technology and signal processing for brain-machine interfaces. IEEE Signal Process. Mag. 25(1), 29–40 (2008) · doi:10.1109/MSP.2008.4408440
[14] Schwab, H.: Reconstruction from averages. Ph.D. thesis, Dept. Mathematics, Univ. Vienna (2003)
[15] Sun, W., Zhou, X.: Reconstruction of band-limited functions from local averages. Constr. Approx. 18(2), 205–222 (2002) · Zbl 1002.42022 · doi:10.1007/s00365-001-0011-y
[16] Wei, D.: Time based analog to digital converters. Ph.D. thesis, University of Florida (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.