×

zbMATH — the first resource for mathematics

Remark on charge conjugation in the non relativistic limit. (English) Zbl 1106.81029
Summary: We study the non relativistic limit of the charge conjugation operation \(C\) in the context of the Dirac equation coupled to an electromagnetic field. The limit is well defined and, as in the relativistic case, \(C\), \(P\) (parity) and \(T\) (time reversal) are the generators of a matrix group isomorphic to a semidirect sum of the dihedral group of eight elements and \(\mathbb Z_2\). The existence of the limit is supported by an argument based in quantum field theory. Also, and most important, the limit exists in the context of galilean relativity. Finally, if one complexifies the Lorentz group and therefore the galilean spacetime \(x_\mu\), then the explicit form of the matrix for \(C\) allows to interpret it, in this context, as the complex conjugation of the spatial coordinates: \(\vec{x} \to \vec{x}^*\). This result is natural in a fiber bundle description.

MSC:
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P. (1982). Quantum Electrodynamics, Landau and Lifshitz Course of Theoretical Physics, Vol. 4, 2nd edn., p. 45. Pergamon Press, Oxford.
[2] Merzbacher, E. (1998). Quantum Mechanics, 3rd. edn., p. 444. Wiley, New York. · Zbl 0102.42701
[3] Abers, E. S. (2004). Quantum Mechanics, p. 102. Pearson Education, New Jersey.
[4] Bigi, I. I. and Sanda, A. I. (2000). CP Violation, pp. 14, 18. Cambridge University Press, Cambridge. · Zbl 0998.81115
[5] Bjorken, J. D. and Drell, S. D. (1964). Relativistic Quantum Mechanics, p. 11. Mc Graw-Hill, New York. · Zbl 0184.54201
[6] Socolovsky, M. (2004). The CPT Group of the Dirac Field. International Journal of Theoretical Physics 43, 1941–1967; arXiv: math-ph/0404038. · Zbl 1073.81033 · doi:10.1023/B:IJTP.0000049003.90851.60
[7] Cervantes, D. B., Quiroga, S. L., Perissinotti, L. J., and Socolovsky, M. (2005). Bundle Theory of Improper Spin Transformations. International Journal of Theoretical Physics 44, 267–276; arXiv: quant-ph/0410079. · Zbl 1077.81046 · doi:10.1007/s10773-005-2061-6
[8] de Azcárraga, J. A. and Izquierdo, J. M. (1995). Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics, pp. 154–155. Cambridge University Press, Cambridge. · Zbl 0836.22027
[9] Wolfenstein, L. and Ravenhall, D. G. (1952). Some Consequences of Invariance under charge conjugation. Physical Review 88, 279–282. · Zbl 0048.44801 · doi:10.1103/PhysRev.88.279
[10] Sternberg, S. (1994). Group Theory and Physics, pp. 2, 6. Cambridge University Press, Cambridge. · Zbl 0816.53002
[11] Streater, R. F. and Wightman, A. S. (1964). PCT, Spin and Statistics, and All That, p. 14. Benjamin, New York. · Zbl 0135.44305
[12] Mac Lane, S. and Birkoff, G. (1979). Algebra, p. 413, 2nd. edn., Macmillan Pub. Co., New York.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.