×

Perona-Malik model with diffusion coefficient depending on fractional gradient via Caputo-Fabrizio derivative. (English) Zbl 1474.94023

Summary: The Perona-Malik (PM) model is used successfully in image processing to eliminate noise while preserving edges; however, this model has a major drawback: it tends to make the image look blocky. This work proposes to modify the PM model by introducing the Caputo-Fabrizio fractional gradient inside the diffusivity function. Experiments with natural images show that our model can suppress efficiently the blocky effect. Also, our model has good performance in visual quality, high peak signal-to-noise ratio (PSNR), and lower value of mean absolute error (MAE) and mean square error (MSE).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
35Q94 PDEs in connection with information and communication
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Weickert, J., Anisotropic Diffusion in Image Processing, 1 (1998), Stuttgart: Teubner, Stuttgart · Zbl 0886.68131
[2] Guichard, F.; Moisan, L.; Morel, J.-M., A review of P.D.E. models in image processing and image analysis, Journal de Physique IV (Proceedings), 12, 1, 137-154 (2002) · doi:10.1051/jp42002006
[3] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639 (1990) · doi:10.1109/34.56205
[4] Losada, J.; Nieto, J., Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 87-92 (2015)
[5] Yuan, J.; Wang, J., Perona-Malik model with a new diffusion coefficient for image denoising, International Journal of Image and Graphics, 16, 2, article 1650011 (2016) · doi:10.1142/S021946781650011X
[6] Kamalaveni, V.; Rajalakshmi, R. A.; Narayanankutty, K. A., Image denoising using variations of Perona-Malik model with differents edges stopping functions, Procedia Computer Science, 58, 673-682 (2015) · doi:10.1016/j.procs.2015.08.087
[7] Tsiotsios, C.; Petrou, M., On the choice of the parameters for anisotropic diffusion in image processing, Pattern Recognition, 46, 5, 1369-1381 (2013) · doi:10.1016/j.patcog.2012.11.012
[8] Catté, F.; Lions, P. L.; Morel, J. M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29, 1, 182-193 (1992) · Zbl 0746.65091 · doi:10.1137/0729012
[9] Yu, J.; Zhai, R.; Zhou, S.; Tan, L., Image denoising based on adaptive fractional order with improved PM model, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1427.94031 · doi:10.1155/2018/9620754
[10] Wang, N.; Shang, Y.; Chen, Y.; Yang, M.; Zhang, Q.; Liu, Y.; Gui, Z., A hybrid model for image denoising combining modified isotropic diffusion model and modified Perona-Malik model, IEEE Access, 6, 33568-33582 (2018) · doi:10.1109/ACCESS.2018.2844163
[11] Surya Prasath, V. B., Image denoising by anisotropic diffusion with inter-scale information fusion, Pattern Recognition and Image Analysis, 27, 4, 748-753 (2017) · doi:10.1134/S1054661817040174
[12] Alvarez, L.; Lions, P. L.; Morel, J. M., Image selective smoothing and edge detection by nonlinear difusion II, SIAM Journal on Numerical Analysis, 29, 3, 845-866 (1992) · Zbl 0766.65117 · doi:10.1137/0729052
[13] You, Y.-L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing, 9, 10, 1723-1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[14] Guidotti, P.; Longo, K., Two enhanced fourth order diffusion models for image denoising, Journal of Mathematical Imaging and Vision, 40, 2, 188-198 (2011) · Zbl 1255.68235 · doi:10.1007/s10851-010-0256-9
[15] Zeng, W.; Lu, X.; Tan, X., A class of fourth-order telegraph-diffusion equations for image restoration, Journal of Applied Mathematics, 2011 (2011) · Zbl 1223.94006 · doi:10.1155/2011/240370
[16] Theljani, A.; Belhachmi, Z.; Moakher, M., High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems, Nonlinear Analysis: Real World Applications, 47, 251-271 (2019) · Zbl 1414.65030 · doi:10.1016/j.nonrwa.2018.10.013
[17] Liu, X.; Huang, L.; Guo, Z., Adaptive fourth-order partial differential equation filter for image denoising, Applied Mathematics Letters, 24, 8, 1282-1288 (2011) · Zbl 1218.35006 · doi:10.1016/j.aml.2011.01.028
[18] Hu, S.; Liao, Z.; Chen, W., Sinogram restoration for low-dosed X-ray computed tomography using fractional- order Perona-Malik diffusion, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.94015 · doi:10.1155/2012/391050
[19] Janev, M.; Pilipović, S.; Atanacković, T.; Obradović, R.; Ralević, N., Fully fractional anisotropic diffusion for image denoising, Mathematical and Computer Modelling, 54, 1-2, 729-741 (2011) · Zbl 1225.94003 · doi:10.1016/j.mcm.2011.03.017
[20] Bai, J.; Feng, X.-C., Fractional order anisotropic diffusion for image denoising, IEEE Transactions on Image Processing, 16, 10, 2492-2502 (2007) · Zbl 1119.76377 · doi:10.1109/TIP.2007.904971
[21] Liao, Z., Low-dosed X-ray computed tomography imaging by regularized fully spatial fractional-order Perona-Malik diffusion, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1291.92078 · doi:10.1155/2013/371868
[22] Hu, S., External fractional-order gradient vector Perona-Malik diffusion for sinogram restoration of low-dosed X-ray computed tomography, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.35412 · doi:10.1155/2013/516919
[23] Guidotti, P.; Longo, K., Well-posedness for a class of fourth order diffusions for image processing, Nonlinear Differential Equations and Applications, 18, 4, 407-425 (2011) · Zbl 1227.35149 · doi:10.1007/s00030-011-0101-x
[24] Ramírez, C.; Astorga, V.; Nuñez, H.; Jaques, A.; Simpson, R., Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: the effects of relative humidity and temperature, Food Process Engineering, 40, 5, article e12549 (2017) · doi:10.1111/jfpe.12549
[25] Concezzi, M.; Spigler, R., Identifying the fractional orders in anomalous diffusion models from real data, Fractal and Fractional, 2, 1, 14 (2018) · doi:10.3390/fractalfract2010014
[26] Liang, X.; Gao, F.; Zhou, C. B.; Wang, Z.; Yang, X. J., An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type, Advances in Difference Equations, 2018, 1 (2018) · Zbl 1445.35305 · doi:10.1186/s13662-018-1478-1
[27] Andrade, A. M. F.; Lima, E. G.; Dartora, C. A., An introduction to fractional calculus and its applications in electric circuits, Revista Brasileira de Ensino de Física, 40, article e3314 (2018)
[28] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A., Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, International Journal of Electronics and Communications, 85, 108-117 (2018) · doi:10.1016/j.aeue.2017.12.031
[29] Sikora, R., Fractional derivatives in electrical circuit theory critical remarks, Archives of Electrical Engineering, 66, 1, 155-163 (2017) · doi:10.1515/aee-2017-0011
[30] Rchid, M.; Ammi, S.; Jamiai, I., Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration, Discrete and Continuous Dynamical Systems Series, 11, 1, 103-117 (2018) · Zbl 1422.65143 · doi:10.3934/dcdss.2018007
[31] Nandal, A.; Gamboa-Rosales, H.; Dhaka, A.; Celaya-Padilla, J. M.; Galvan-Tejada, J. I.; Galvan-Tejada, C. E.; Martinez-Ruiz, F. J.; Guzman-Valdivia, C., Image edge detection using fractional calculus with feature and contrast enhancement, Circuits, Systems, and Signal Processing, 37, 9, 3946-3972 (2018) · Zbl 1425.94018 · doi:10.1007/s00034-018-0751-6
[32] el-Ajou, A.; Oqielat, M. N.; al-Zhour, Z.; Kumar, S.; Momani, S., Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29, 9, article 093102 (2019) · Zbl 1423.35392 · doi:10.1063/1.5100234
[33] Doungmo Goufo, E. F.; Kumar, S.; Mugisha, S. B., Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos, Solitons & Fractals, 130, article 109467 (2020) · Zbl 1489.35297 · doi:10.1016/j.chaos.2019.109467
[34] Kumar, S.; Kumar, A.; Nisar, K. S., Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems, Advances in Difference Equations, 2019, 1 (2019) · Zbl 1487.65169 · doi:10.1186/s13662-019-2334-7
[35] Kumar, S.; Nisar, K. S.; Kumar, R.; Cattani, C.; Samet, B., A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force, Mathematical Methods in the Applied Sciences, 43, 4460-4471 (2020) · Zbl 1447.35359 · doi:10.1002/mma.6208
[36] Kumar, S.; Kumar, A.; Abbas, S.; Al Qurashi, M.; Baleanu, D., A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations, Advances in Difference Equations, 2020, 1 (2020) · Zbl 1487.35410 · doi:10.1186/s13662-019-2488-3
[37] Kumar, S., A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Engineering Journal, 52, 4, 813-819 (2013) · doi:10.1016/j.aej.2013.09.005
[38] Oqielat, M.; El-Ajou, A.; Al-Zhour, Z.; Alkhasawneh, R.; Alrabaiah, H., Series solutions for nonlinear time-fractional Schrodinger equations: comparisons between conformable and Caputo derivatives, Alexandria Engineering Journal (2020) · doi:10.1016/j.aej.2020.01.023
[39] el-Ajou, A.; al-Zhour, Z.; Oqielat, M.; Momani, S.; Hayat, T., Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications, The European Physical Journal Plus, 134, 8, 402 (2019) · doi:10.1140/epjp/i2019-12731-x
[40] Al-Zhour, Z.; Barfeie, M.; Soleymani, F.; Tohidi, E., A computational method to price with transaction costs under the nonlinear Black-Scholes model, Solitons & Fractals, 127, 291-301 (2019) · Zbl 1448.91322 · doi:10.1016/j.chaos.2019.06.033
[41] el-Ajou, A.; Oqielat, M. N.; al-Zhour, Z.; Momani, S., Analytical numerical solutions of the fractional multi-pantograph system: two attractive methods and comparisons, Results in Physics, 14, article 102500 (2019) · doi:10.1016/j.rinp.2019.102500
[42] Kumar, R.; Kumar, S.; Singh, J.; Al-Zhour, Z., A comparative study for fractional chemical kinetics and carbon dioxide CO_2 absorbed into phenyl glycidyl ether problems, AIMS Mathematics, 5, 4, 3201-3222 (2020) · Zbl 1484.65150 · doi:10.3934/math.2020206
[43] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Mozyrska, D., A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29, 8, article 083127 (2019) · Zbl 1420.92039 · doi:10.1063/1.5096159
[44] Jajarmi, A.; Arshad, S.; Baleanu, D., A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A, 535, 122524 (2019) · Zbl 07571256 · doi:10.1016/j.physa.2019.122524
[45] Jajarmi, A.; Baleanu, D.; Sajjadi, S. S.; Asad, J. H., A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7, article 00196 (2019) · doi:10.3389/fphy.2019.00196
[46] Jajarmi, A.; Ghanbari, B.; Baleanu, D., A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29, 9, article 093111 (2019) · Zbl 1423.92093 · doi:10.1063/1.5112177
[47] Boro Nchama, G. A. M., Properties of Caputo-Fabrizio fractional operators, New Trends in Mathematical Sciences, 1, 8, 1-25 (2020) · doi:10.20852/ntmsci.2020.393
[48] Mboro-Nchama, G. A.; Mecías, A. L.; Ricard, M. R., The Caputo-Fabrizio fractional integral to generate some new inequalities, Information Sciences Letters, 8, 2, 73-80 (2019) · doi:10.18576/isl/080205
[49] Zeid-Daou, R. A.; El-Samarani, F.; Yaacoub, C.; Moreau, X.; Al-Turjman, F., Fractional derivatives for edge detection: application to road obstacles, Smart Cities Performability, Cognition, & Security. EAI/Springer Innovations in Communication and Computing, 115-137 (2020), Cham: Springer, Cham · doi:10.1007/978-3-030-14718-1_6
[50] Hacini, M.; Hacini, A.; Akdag, H.; Hachouf, F., A 2D-fractional derivative mask for image feature edge detection, 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) · doi:10.1109/atsip.2017.8075588
[51] Li, D.; Zhao, C.; Jiang, M.; Huang, Y.; Li, Y., Fractional order edge detection method, 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN) · doi:10.1109/iccsn.2019.8905350
[52] Gao, C. B.; Zhou, J. L.; Hu, J. R.; Lang, F. N., Edge detection of colour image based on quaternion fractional differential, IET Image Processing, 5, 3, 261-272 (2011) · doi:10.1049/iet-ipr.2009.0409
[53] Mathieu, B.; Melchior, P.; Outstaloup, A.; Ceyral, C., Fractional differentiation for edge detection, Signal Processing, 83, 11, 2421-2432 (2003) · Zbl 1145.94309 · doi:10.1016/S0165-1684(03)00194-4
[54] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 2, 1-13 (2015)
[55] al-Salti, N.; Karimov, E.; Kerbal, S., Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative, New Trends in Mathematical Sciences, 4, 4, 79-80 (2016) · doi:10.20852/ntmsci.2016422308
[56] Lieb, E.; Loss, M., Analysis, American Mathematical Society, 14 (2001) · Zbl 0966.26002
[57] Caputo, M.; Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2, 1, 1-11 (2016) · doi:10.18576/pfda/020101
[58] Yang, X. J.; Srivastava, H. M.; Machado, T., A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Thermal Science, 20, 2, 753-756 (2016) · doi:10.2298/tsci151224222y
[59] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equation (2010), Springer Science & Business Media · Zbl 1218.46002
[60] Xu, J.; Wang, L.; Shi, Z., A switching weighted vector median filter based on edge detection, Signal Processing, 98, 359-369 (2014) · doi:10.1016/j.sigpro.2013.11.035
[61] Fernández, M. B.; Hidalgo, M. G.; Mecías, A. L., New estimation method of the contrast parameter for the Perona-Malik diffusion equation, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 4, 238-252 (2014) · doi:10.1080/21681163.2014.974289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.