×

MEXIT: maximal un-coupling times for stochastic processes. (English) Zbl 1403.60062

Summary: Classical coupling constructions arrange for copies of the same Markov process started at two different initial states to become equal as soon as possible. In this paper, we consider an alternative coupling framework in which one seeks to arrange for two different Markov (or other stochastic) processes to remain equal for as long as possible, when started in the same state. We refer to this “un-coupling” or “maximal agreement” construction as MEXIT, standing for “maximal exit”. After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit MEXIT construction for stochastic processes in discrete time with countable state-space. This construction is generalized to random processes on general state-space running in continuous time, and then exemplified by discussion of MEXIT for Brownian motions with two different constant drifts.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aldous, D., Random walks on finite groups and rapidly mixing Markov chains, Sémin. Probab. Strasbg., 17, 243-297 (1983)
[2] Alquier, P.; Friel, N.; Everitt, R.; Boland, A., Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels, Stat. Comput., 26, 29-47 (2016) · Zbl 1342.60122
[3] Andrieu, C.; Roberts, G. O., The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Statist., 37, 697-725 (2009) · Zbl 1185.60083
[4] Billingsley, P., Convergence of Probability Measures (1968), John Wiley & Sons Inc: John Wiley & Sons Inc New York · Zbl 0172.21201
[5] Burdzy, K.; Kendall, W. S., Efficient Markovian couplings: examples and counterexamples, Ann. Appl. Probab., 10, 362-409 (2000) · Zbl 0957.60083
[6] Ceperley, D. M.; Dewing, M., The penalty method for random walks with uncertain energies, J. Chem. Phys., 110, 9812-9820 (1999)
[7] Doob, J. L., Stochastic Processes (1953), Wiley: Wiley New York · Zbl 0053.26802
[8] Doob, J. L., Measure Theory: Graduate Texts in Mathematics (1994), Springer: Springer New York
[9] Farrell, R. H., Asymptotic behavior of expected sample size in certain one sided tests, Ann. Math. Statist., 35, 36-72 (1964) · Zbl 0156.39306
[10] Goldstein, S., Maximal coupling, Probab. Theory Related Fields, 46, 193-204 (1978) · Zbl 0398.60097
[11] Griffeath, D., A maximal coupling for Markov chains, Probab. Theory Related Fields, 31, 95-106 (1975) · Zbl 0301.60043
[12] Halmos, P. R., Measure Theory (1978), Springer: Springer New York
[13] Kendall, W. S., Coupling, local times, immersions, Bernoulli, 21, 1014-1046 (2015) · Zbl 1332.60118
[14] Lerche, H. R., Boundary Crossing of Brownian Motion: Its Relation to the Law of the Iterated Logarithm and to Sequential Analysis: Volume 40 (2013), Springer Science & Business Media: Springer Science & Business Media New York
[15] Lindvall, T., (Lectures on the Coupling Method. Lectures on the Coupling Method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (1992), John Wiley & Sons Inc: John Wiley & Sons Inc New York) · Zbl 0850.60019
[16] Maisonneuve, B., Topologies du type de Skorohod, Sémin. Probab. Strasbg., 6, 113-117 (1972) · Zbl 0241.60075
[17] Medina-Aguayo, F.; Lee, A.; Roberts, G. O., Stability of noisy Metropolis-Hastings, Stat. Comput., 26, 1187-1211 (2015) · Zbl 1505.62286
[18] R.B. Nelsen, An Introduction to Copulas. New York: Springer Series in Statistics, 2006.; R.B. Nelsen, An Introduction to Copulas. New York: Springer Series in Statistics, 2006. · Zbl 1152.62030
[19] G.K. Nicholls, C. Fox, A.M. Watt, Coupled MCMC with a randomized acceptance probability. 2012. arXiv preprint arXiv:1205.6857; G.K. Nicholls, C. Fox, A.M. Watt, Coupled MCMC with a randomized acceptance probability. 2012. arXiv preprint arXiv:1205.6857
[20] G. Peskir, On reflecting Brownian motion with drift, in: Proc. Symp. Stoch. Syst., 2006, pp. 1-5.; G. Peskir, On reflecting Brownian motion with drift, in: Proc. Symp. Stoch. Syst., 2006, pp. 1-5. · Zbl 1196.93074
[21] Pitman, J. W., On coupling of Markov chains, Probab. Theory Related Fields, 35, 315-322 (1976) · Zbl 0356.60003
[22] Rigo, P.; Thorisson, H., Transfer theorems and right-continuous processes, Theory Stoch. Process., 21, 2, 91-95 (2016) · Zbl 1374.60003
[23] Roberts, G. O.; Gelman, A.; Gilks, W. R., Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110-120 (1997) · Zbl 0876.60015
[24] Roberts, G. O.; Rosenthal, J. S., General state space Markov chains and MCMC algorithms, Probab. Surv., 1, 20-71 (2004) · Zbl 1189.60131
[25] Roberts, G. O.; Rosenthal, J. S., Coupling and ergodicity of adaptive MCMC, J. Appl. Probab., 44, 458-475 (2007) · Zbl 1137.62015
[26] Rogers, L. C.G.; Williams, D., Diffusions, Markov Processes, and Martingales: Volume II (1987), John Wiley & Sons: John Wiley & Sons New York · Zbl 0627.60001
[27] Rosenthal, J. S., Faithful couplings of Markov chains: now equals forever, Adv. in Appl. Math., 18, 372-381 (1997) · Zbl 0872.60050
[28] Stoyanov, J., Counterexamples in Probability (1997), John Wiley & Sons: John Wiley & Sons New York · Zbl 0884.60001
[29] Sverchkov, M. Y.; Smirnov, S. N., Maximal coupling for processes in D \([0, \infty ]\), Dokl. Akad. Nauk SSSR, 311, 1059-1061 (1990)
[30] Thorisson, H., Coupling, Stationarity, and Regeneration (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0949.60007
[31] F. Völlering, On maximal agreement couplings. 2016. Arxiv preprint 1608.01511.; F. Völlering, On maximal agreement couplings. 2016. Arxiv preprint 1608.01511.
[32] Williams, D., Path decomposition and continuity of local time for one-dimensional diffusions, I, Proc. Lond. Math. Soc., s3-28, 738-768 (1974) · Zbl 0326.60093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.