×

On the in-plane failure and post-failure behaviour of pristine and perforated single-layer graphene sheets. (English) Zbl 07273375

Summary: The tensile behaviour and the pure shear behaviour of pristine and perforated single-layer graphene sheets are numerically investigated through a stick-and-spring model including both material and geometric non-linearities. The model is formulated in finite kinematics and the atomic interactions are modelled through the modified Morse potential, tuned with an improved set of parameters. The progression of the failure process of the sheets is numerically reconstructed using the arc-length strategy. The failure profiles are displayed and discussed. A continualization of the obtained results is made. The engineering strains and stresses and the second Piola and Green-Lagrange tensors are computed and compared with results given in the literature.

MSC:

74-XX Mechanics of deformable solids

Software:

Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Novoselov, KS, Geim, AK, Morozov, SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-669. · doi:10.1126/science.1102896
[2] Stankovich, S, Dikin, DA, Dommett, GHB, et al. Graphene-based composite materials. Nature 2006; 442: 282-286. · doi:10.1038/nature04969
[3] Lee, C, Wei, X, Kysar, JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321: 385-388. · doi:10.1126/science.1157996
[4] Choi, W, Lahiri, I, Seelaboyina, R, et al. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 2010; 35: 52-71. · doi:10.1080/10408430903505036
[5] Young, RJ, Kinloch, IA, Gong, L, et al. The mechanics of graphene nanocomposites: a review. Compos Sci Technol 2012; 72: 1459-1476. · doi:10.1016/j.compscitech.2012.05.005
[6] Nguyen, BH, Nguyen, VH. Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechnol 2016; 7: 023002. · doi:10.1088/2043-6262/7/2/023002
[7] Mohan, VB, Lau, K, Hui, D, et al. Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B Eng 2018; 142: 200-220. · doi:10.1016/j.compositesb.2018.01.013
[8] Kumar, R, Singh, R, Hui, D, et al. Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos B Eng 2018; 134: 193-206. · doi:10.1016/j.compositesb.2017.09.049
[9] Galiotis, C, Frank, O, Koukaras, EN, et al. Graphene mechanics: current status and perspectives. Annu Rev Chem Biomol Eng 2015; 6: 121-140. · doi:10.1146/annurev-chembioeng-061114-123216
[10] Zhang, G, Zhang, Y-W. Strain effects on thermoelectric properties of two-dimensional materials. Mech Mater 2015; 91: 382-398. · doi:10.1016/j.mechmat.2015.03.009
[11] Zandiatashbar, A, Lee, G-H, An, SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 2014; 5: 3186. · doi:10.1038/ncomms4186
[12] Banhart, F, Kotakoski, J, Krasheninnikov, AV. Structural defects in graphene. ACS Nano 2011; 5: 26-41. · doi:10.1021/nn102598m
[13] Hashimoto, A, Suenaga, K, Gloten, A, et al. Direct evidence for atomic defects in graphene layers. Nature 2004; 430: 870-873. · doi:10.1038/nature02817
[14] Chen, J-H, Li, L, Cullen, WG, et al. Tunable Kondo effect in graphene with defects. Nat Phys 2011; 7: 535-538. · doi:10.1038/nphys1962
[15] Takamura, T, Endo, K, Fu, L, et al. Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim Acta 2007; 53: 1055-1061. · doi:10.1016/j.electacta.2007.03.052
[16] Schneider, GF, Kowalczyk, SW, Calado, VE, et al. DNA translocation through graphene nanopores. Nano Lett 2010; 10: 3163-3167. · doi:10.1021/nl102069z
[17] Jiang, D, Cooper, VR, Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett 2009; 9: 4019-4024. · doi:10.1021/nl9021946
[18] Cohen-Tanugi, D, Grossman, JC. Water desalination across nanoporous graphene. Nano Lett 2012; 12: 3602-3608. · doi:10.1021/nl3012853
[19] Kudin, KN, Scuseria, GE, Yakobson, BI. \(C_2\) F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 2001; 64: 235406. · doi:10.1103/PhysRevB.64.235406
[20] Liu, F, Ming, P, Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 2007; 76: 064120. · doi:10.1103/PhysRevB.76.064120
[21] Yanovsky, YG, Nikitina, EA, Karnet, YN, et al. Quantum mechanics study of the mechanism of deformation and fracture of graphene. Phys Mesomech 2009; 12: 254-262. · doi:10.1016/j.physme.2009.12.007
[22] Aminpour, H, Rizzi, NL. A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math Mech Solids 2016; 21: 168-181. · Zbl 1332.74007
[23] Ru, CQ. Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math Mech Solids 2009; 14: 88-101. · Zbl 1257.74119
[24] Strozzi, M, Pellicano, F. Linear vibrations of triple-walled carbon nanotubes. Math Mech Solids 2018; 23: 1456-1481. · Zbl 1430.74062
[25] Ghaffari, R, Duong, TX, Sauer, RA. A new shell formulation for graphene structures based on existing ab-initio data. Int J Solids Struct 2018; 135: 37-60. · doi:10.1016/j.ijsolstr.2017.11.008
[26] Georgantzinos, SK, Giannopoulos, GI, Anifantis, NK. Numerical investigation of elastic properties of graphene structures. Mater Design 2010; 31: 4646-4654. · doi:10.1016/j.matdes.2010.05.036
[27] Baykasoglu, C, Mugan, A. Nonlinear fracture analysis of single-layer graphene sheets. Eng Fract Mech 2012; 96: 241-250. · doi:10.1016/j.engfracmech.2012.08.010
[28] Sakharova, NA, Pereira, AFG, Antunes, JM, et al. Mechanical characterization of single-walled carbon nanotubes: numerical simulation study. Compos B Eng 2015; 75: 73-85. · doi:10.1016/j.compositesb.2015.01.014
[29] Fan, N, Ren, Z, Jing, G, et al. Numerical investigation of the fracture mechanism of defective graphene sheets. Materials2017; 10: 164.
[30] Savvas, D, Stefanou, G. Determination of random material properties of graphene sheets with different types of defects. Compos B Eng 2018; 143: 47-54. · doi:10.1016/j.compositesb.2018.01.008
[31] Zhao, H, Min, K, Aluri, NR. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 2009; 9: 3012-3015. · doi:10.1021/nl901448z
[32] Xu, Z. Graphene nano-ribbons under tension. J Comput Theor Nanosci 2009; 6: 625-628. · doi:10.1166/jctn.2009.1082
[33] Ansari, A, Montevalli, B, Montazeri, A, et al. Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun 2011; 151: 1141-1145. · doi:10.1016/j.ssc.2011.05.021
[34] Wang, MC, Yan, C, Ma, L, et al. Effect of defects on fracture strength of graphene sheets. Comput Mater Sci 2012; 54: 236-239. · doi:10.1016/j.commatsci.2011.10.032
[35] Gamboa, A, Vignoles, GL, Leyssale, J-M. On the prediction of graphene’s elastic properties with reactive empirical bond order potential. Carbon 2015; 89: 176-187. · doi:10.1016/j.carbon.2015.03.035
[36] Belytschko, T, Xiao, SP, Schatz, GC, et al. Atomistic simulations of nanotube fracture. Phys Rev B 2002; 65: 235430. · doi:10.1103/PhysRevB.65.235430
[37] Meo, M, Rossi, M. Tensile failure prediction of single wall carbon nanotube. Eng Fract Mech 2006; 73: 2589-2599. · doi:10.1016/j.engfracmech.2006.05.005
[38] Duan, WH, Wang, Q, Liew, KM, et al. Molecular mechanics modeling of carbon nanotube fracture. Carbon 2007; 45: 1769-1776. · doi:10.1016/j.carbon.2007.05.009
[39] Xiao, JR, Staniszewski, J, Gillespie, JW Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects. Mater Sci Eng A 2010; 527: 715-723. · doi:10.1016/j.msea.2009.10.052
[40] Georgantzinos, SK, Katsareas, DE, Anifantis, NK. Graphene characterization: a fully non-linear spring-based finite element prediction. Phys E 2012; 55: 89-94.
[41] Georgantzinos, SK, Katsareas, DE, Anifantis, NK. Limit load analysis of graphene with pinhole defects: a nonlinear structural mechanics approach. Int J Mech Sci 2012; 55: 89-94. · doi:10.1016/j.ijmecsci.2011.12.006
[42] Berinskii, IE, Borodich, FM. Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 2013; 62: 60-68. · doi:10.1016/j.mechmat.2013.03.004
[43] Theodosiou, TC, Saravanos, DA. Numerical simulation of graphene fracture using molecular mechanics based nonlinear finite elements. Comput Mater Sci 2014; 82: 56-65. · doi:10.1016/j.commatsci.2013.09.032
[44] Korobeynikov, SN, Alyokhin, VV, Annin, BD, et al. Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math Mech Solids 2015; 20: 836-870. · Zbl 1330.74068
[45] Mourad, A, Zalzali, I. Discrete and homogenized mechanical models for single walled carbon nanotubes. Math Mech Solids 2016; 21: 773-790. · Zbl 1370.74015
[46] Genoese, A, Genoese, A, Rizzi, NL, et al. On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos B Eng 2017; 115: 316-329. · doi:10.1016/j.compositesb.2016.09.064
[47] Genoese, A, Genoese, A, Rizzi, NL, et al. Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization. Meccanica 2018; 53: 593-611. · doi:10.1007/s11012-017-0686-1
[48] Genoese, A, Genoese, A, Salerno, G. Elastic constants of achiral single-wall CNTs: analytical expressions and a focus on size and small scale effects. Compos B Eng 2018; 147: 207-226. · doi:10.1016/j.compositesb.2018.04.016
[49] Hossain, MZ, Hao, T, Silverman, B. Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes. J Phys Condens Matter 2018; 30: 055901. · doi:10.1088/1361-648X/aaa3cc
[50] Korobeynikov, SN, Alyokhin, VV, Babichev, AV. Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech 2018; 229: 2343-2378. · doi:10.1007/s00707-018-2115-5
[51] Riks, E. An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 1979; 15: 529-551. · Zbl 0408.73040 · doi:10.1016/0020-7683(79)90081-7
[52] Riks, E. Some computational aspects of the stability analysis of nonlinear structures. Comput Methods Appl Mech Eng 1984; 47: 219-259. · Zbl 0535.73062 · doi:10.1016/0045-7825(84)90078-1
[53] Geuzaine, C, Remacle, J-F. GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 2009; 79: 1309-1331. · Zbl 1176.74181 · doi:10.1002/nme.2579
[54] Garcea, G, Trunfio, GA, Casciaro, R. Mixed formulation and locking in path-following nonlinear analysis. Comput Methods Appl Mech Eng 1998; 165: 247-272. · Zbl 0954.74061 · doi:10.1016/S0045-7825(98)00068-1
[55] Xia, Y, Zhao, M, Ma, Y, et al. Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure. Phys Rev B 2002; 65: 155415. · doi:10.1103/PhysRevB.65.155415
[56] Brenner, DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 1990; 42: 9458-9471. · doi:10.1103/PhysRevB.42.9458
[57] Brenner, DW, Shenderova, OA, Harrison, JA, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 2002; 14: 782-802. · doi:10.1088/0953-8984/14/4/312
[58] Genoese, AL, Genoese, AN, Salerno, G. On the nanoscopic behaviour of single-wall C, BN and SiC nanotubes. Acta Mech 2019; 230(3): 1105-1128. doi: 10.1007/s00707-018-2336-7. · Zbl 1481.74210 · doi:10.1007/s00707-018-2336-7
[59] Genoese, AL, Genoese, AN, Rizzi, NL, et al. Buckling analysis of single-layer graphene sheets using molecular mechanics. Front Mater 2019; doi: 10.3389/fmats.2019.00026. · doi:10.3389/fmats.2019.00026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.