×

The transition to a layered phase in the anisotropic five-dimensional \(\mathrm{SU}(2)\) Yang-Mills theory. (English) Zbl 1331.81227

Summary: We extend to large lattices the work of a previous investigation of the phase diagram of the anisotropic five-dimensional \(\mathrm{SU}(2)\) Yang-Mills model using Monte Carlo simulations in the regime where the lattice spacing in the fifth dimension is larger than in the other four dimensions. We find a first order phase transition between the confining and deconfining phase at the anisotropic parameter point \(\beta_4=2.60\) which was previously claimed to be the critical point at which the order of the transition changes from first to second. We conclude that large lattices are required to establish the first order nature of this line of transitions and consequently that the scenario of dimensional reduction of the five-dimensional theory to a continuum four-dimensional theory via the existence of the so-called “layer phase” is unpromising.

MSC:

81T25 Quantum field theory on lattices
81T13 Yang-Mills and other gauge theories in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. Rev. D, 59, 086004 (1999)
[2] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 4690 (1999)
[3] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 3370 (1999)
[4] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. Lett. B, 429, 263 (1998)
[5] Dienes, K. R.; Dudas, E.; Gherghetta, T., Nucl. Phys. B, 537, 47 (1999)
[6] Dvali, G.; Shifman, M. A., Phys. Lett. B, 396, 64 (1997)
[7] Ejiri, S.; Kubo, J.; Murata, M., Phys. Rev. D, 62, 105025 (2000)
[8] de Forcrand, P.; Kurkela, A.; Panero, M., JHEP, 1006, 050 (2010)
[9] Knechtli, F.; Luz, M.; Rago, A., Nucl. Phys. B, 856, 74 (2012)
[10] Del Debbio, L.; Hart, A.; Rinaldi, E., JHEP, 1207, 178 (2012)
[11] Antoniadis, I., Phys. Lett. B, 246, 377 (1990)
[12] Kaluza, T., Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966 (1921)
[13] Klein, O., Z. Phys., 37, 895 (1926)
[14] Fu, Y.; Nielsen, H. B., Nucl. Phys. B, 236, 167 (1984)
[15] Dimopoulos, P., Nucl. Phys. B, 617, 237 (2001)
[16] Dimopoulos, P.; Farakos, K.; Vrentzos, S., Phys. Rev. D, 74, 094506 (2006)
[17] Farakos, K.; Vrentzos, S., Phys. Rev. D, 77, 094511 (2008)
[18] Irges, N.; Knechtli, F., Nucl. Phys. B, 822, 1 (2009)
[19] Irges, N.; Knechtli, F., Phys. Lett. B, 685, 86 (2010)
[20] Farakos, K.; Vrentzos, S., Nucl. Phys. B, 862, 633 (2012)
[21] Creutz, M., Phys. Rev. Lett., 43, 553 (1979)
[22] Kennedy, A.; Pendleton, B., Phys. Lett. B, 156, 393 (1985)
[23] Creutz, M., Phys. Rev. D, 36, 515 (1987)
[24] Edwards, R. G.; Joo, B., Nucl. Phys. B (Proc. Suppl.), 140, 832 (2005)
[25] Winter, F., PoS, LATTICE2011, 050 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.