×

zbMATH — the first resource for mathematics

Embedding and a priori wavelet-adaptivity for Dirichlet problems. (English) Zbl 0985.65149
Let \(\Omega\subset R^d\) be a bounded domain with Lipschitz continuous boundary embedded in a rectangular domain \(\Theta\). The Dirichlet boundary value problem in \(\Omega\) is extended to a periodic boundary value problem over \(\Theta\). For the corresponding variational problem (called the fictitious domain formulation), a Galerkin discretization is applied with subspaces generated by integer translations and binary dilations of a single biorthogonal compactly supported scaling function. Such a domain embedding method was proposed and analyzed in the author’s previous paper [RAIRO, Modélisation Math. Anal. Numér. 32, No. 4, 405-431 (1998; Zbl 0913.65099)].
Now, in order to improve accuracy, the author proposes an a priori adaptive strategy using a finer discretization near the boundary of \(\Omega\). This is done by a modification of approximation subspaces via selecting suitable wavelet subspaces. The theoretical result is illustrated by numerical experiments.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems: implementation and numerical experiments. Tech. Report 173, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 52056 Aachen, Germany (1999). · Zbl 1016.65090
[2] G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math.44 (1991) 141-183. · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[3] J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7 (1970) 112-124. Zbl0201.07803 · Zbl 0201.07803 · doi:10.1137/0707006
[4] W. Cai and W. Zhang, An adaptive spline wavelet ADI(SW-ADI) method for two-dimensional reaction diffusion equations. J. Comput. Phys.139 (1998) 92-126. Zbl0905.65103 · Zbl 0905.65103 · doi:10.1006/jcph.1997.5865
[5] C. Canuto, A. Tabacco and K. Urban, The wavelet element method, part I: construction and analysis. Appl. Comput. Harmon. Anal.6 (1999) 1-52. Zbl0949.42024 · Zbl 0949.42024 · doi:10.1006/acha.1997.0242
[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Stud. Math. Appl.4, North-Holland, Amsterdam (1978). · Zbl 0383.65058
[7] A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations - convergence rates. Math. Comp. posted on May 23, 2000, PII S0025-5718(00)01252-7 (to appear in print).
[8] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.45 (1992) 485-560. Zbl0776.42020 · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[9] S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math.23 (1997) 21-48. · Zbl 0872.65098 · doi:10.1016/S0168-9274(96)00060-8
[10] S. Dahlke, V. Latour and K. Gröchenig, Biorthogonal box spline wavelet bases, in Surface Fitting and Multiresolution Methods, A.L. Méhauté, C. Rabut and L.L. Schumaker Eds., Vanderbilt University Press (1997) 83-92. Zbl0946.65149 · Zbl 0946.65149
[11] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl.2 (1996) 341-362. · Zbl 0919.46006 · eudml:59483
[12] W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numer.6 (1997) 55-228. · Zbl 0884.65106
[13] W. Dahmen, A. Kurdila and P. Oswald Eds., Multiscale Wavelet Methods for Partial Differential Equations. Wavelet Anal. Appl.6, Academic Press, San Diego (1997).
[14] W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv. Comput. Math.1 (1993) 259-335. · Zbl 0826.65093
[15] W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp.68 (1999) 1533-1567. Zbl0932.65148 · Zbl 0932.65148 · doi:10.1090/S0025-5718-99-01092-3
[16] W. Dahmen and R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal.37 (1999) 319-352. Zbl0942.65130 · Zbl 0942.65130 · doi:10.1137/S0036142997330949
[17] I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.41 (1988) 906-966. · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[18] I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Ser. in Appl. Math.61, SIAM Publications, Philadelphia (1992). · Zbl 0776.42018
[19] J. Fröhlich and K. Schneider, An adaptive wavelet-Galerkin algorithm for one- and two-dimensional flame computations. Eur. J. Mech. B Fluids11 (1994) 439-471. Zbl0814.76068 · Zbl 0814.76068
[20] J. Fröhlich and K. Schneider, An adaptive wavelet-vaguelette algorithm for the solution of nonlinear PDEs. J. Comput. Phys.130 (1997) 174-190. · Zbl 0868.65067 · doi:10.1006/jcph.1996.5573
[21] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Ser. Comput. Phys., Springer-Verlag, New York (1984). · Zbl 0536.65054
[22] R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow: Introduction to the control of the Navier-Stokes equations, in Vortex Dynamics and Vortex Methods, C.R. Anderson and C. Greengard Eds., Lectures in Appl. Math.28, Providence, AMS (1991) 219-301. · Zbl 0751.76046
[23] R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg.111 (1994) 283-303. Zbl0845.73078 · Zbl 0845.73078 · doi:10.1016/0045-7825(94)90135-X
[24] R. Glowinski, T.-W. Pan and J. Périaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem - generalizations to some flow problems. Japan J. Indust. Appl. Math.12 (1995) 87-108. · Zbl 0835.76047 · doi:10.1007/BF03167383
[25] R. Glowinski, T.-W. Pan and J. Périaux, Fictitious domain methods for the simulation of Stokes flow past a moving disk, in Computational Fluid Dynamics ’96, J.A. Desideri, C. Hirsh, P. LeTallec, M. Pandolfi and J. Périaux Eds., Chichester, Wiley (1996) 64-70.
[26] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment. Springer Ser. Comput. Math.18, Springer-Verlag, Heidelberg (1992). · Zbl 0755.35021
[27] S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal.29 (1992) 965-986. Zbl0761.65083 · Zbl 0761.65083 · doi:10.1137/0729059
[28] S. Jaffard and Y. Meyer, Bases d’ondelettes dans des ouverts de \Bbb R n . J. Math. Pures Appl.68 (1992) 95-108. · Zbl 0704.46009
[29] A.K. Louis, P. Maass and A. Rieder, Wavelets: Theory and Applications. Pure Appl. Math., Wiley, Chichester (1997). · Zbl 0897.42019
[30] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes. Actualités Mathématiques, Hermann, Paris (1990). English version: Wavelets and Operators, Cambridge University Press (1992).
[31] P. Oswald, Multilevel solvers for elliptic problems on domains, in Dahmen et al. [] 3-58.
[32] A. Rieder, On embedding techniques for 2nd-order elliptic problems, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 179-188. Zbl0911.65111 · Zbl 0911.65111
[33] A. Rieder, A domain embedding method for Dirichlet problems in arbitrary space dimension. RAIRO Modél. Math. Anal. Numér.32 (1998) 405-431. Zbl0913.65099 · Zbl 0913.65099 · eudml:193880
[34] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser.22, Princeton University Press, Princeton (1970). · Zbl 0207.13501
[35] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge, UK (1987). · Zbl 0623.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.