zbMATH — the first resource for mathematics

Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion. (English) Zbl 1131.65104
The computerized tomography is a reconstruction of the function \(f(x)\) from its integrals along straight lines. The Radon transform is used in this procedure. The authors present the modified backprojection algorithm and prove its convergence and formulas of error approximation in the space \(L^{2}(\Omega)\).

65R10 Numerical methods for integral transforms
44A12 Radon transform
Full Text: DOI
[1] Aubin J.-P. (2000). Applied Functional Analysis, Pure & Applied Mathematics. Wiley, New York
[2] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics. Springer, New York (1994) · Zbl 0804.65101
[3] Galigekere R.R., Wiesent K. and Holdsworth D.W. (1999). Techniques to alleviate the effects of view aliasing artifacts in computed tomography. Med. Phys. 26: 896–904 · doi:10.1118/1.598606
[4] Giusti E. (1984). Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel · Zbl 0545.49018
[5] Kress, R.: Numerical Analysis, vol. 181 of Graduate Texts in Mathematics. Springer, New York (1998)
[6] Lewitt R.M., Bates R.H.T. and Peters T.M. (1978). Image reconstruction from projections II: Modified backprojection methods. Optik 50: 85–109
[7] Lions J.L. and Magenes E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer, New York · Zbl 0223.35039
[8] Louis A.K. and Natterer F. (1983). Mathematical problems in computerized tomography. Proc. IEEE 71: 379–389 · doi:10.1109/PROC.1983.12596
[9] Natterer, F.: Genauigkeitsfragen bei der numerischen Rekonstruktion von Bildern, vol. 49 of International series of numerical mathematics (ISNM), Birkhäuser Verlag, Basel, Switzerland, pp. 131–146 (1979)
[10] Natterer F. (1980). A Sobolev space analysis of picture reconstruction. SIAM J. Appl. Math. 39: 402–411 · Zbl 0446.68077 · doi:10.1137/0139034
[11] Natterer F. (1986). The Mathematics of Computerized Tomography. Wiley, Chichester · Zbl 0617.92001
[12] Rieder A. and Faridani A. (2003). The semi-discrete filtered backprojection algorithm is optimal for tomographic inversion. SIAM J. Numer. Anal. 41: 869–892 · Zbl 1052.65118 · doi:10.1137/S0036142902405643
[13] Rieder A. and Schuster Th. (2000). The approximate inverse in action with an application to computerized tomography. SIAM J. Numer. Anal. 37: 1909–1929 · Zbl 0961.65112 · doi:10.1137/S0036142998347619
[14] Schneck, A.: Konvergenz von Rekonstruktionsalgorithmen in der 2D-Tomographie: Der voll-diskrete Fall (Convergence of reconstruction algorithms in 2D-tomography: The fully discrete case). Diploma thesis, Fakultät für Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany (2006)
[15] Shepp L.A. and Logan B.F. (1974). The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21: 21–43 · doi:10.1109/TNS.1974.4327466
[16] Smithey D.T., Beck M., Raymer M.G. and Faridani A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70: 1244–1247 · doi:10.1103/PhysRevLett.70.1244
[17] Weiss G.H., Talbert A.J. and Brooks R.A. (1982). The use of phantom views to reduce CT streaks due to insufficient sampling. Phys. Med. Biol. 27: 1151–1162 · doi:10.1088/0031-9155/27/9/005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.