×

zbMATH — the first resource for mathematics

On linearly related orthogonal polynomials in several variables. (English) Zbl 1295.42006
Summary: Let \(\{\mathbb{P}_{n}\}_{n\geq 0}\) and \(\{\mathbb{Q}_{n}\}_{n\geq 0}\) be two monic polynomial systems in several variables satisfying the linear structure relation \[ \mathbb{Q}_{n} = \mathbb{P}_{n} + M_{n} \mathbb{P}_{n-1}, \quad n\geq 1, \] where \(M_{n}\) are constant matrices of proper size and \(\mathbb{Q}_{0} = \mathbb{P}_{0}\). The aim of our work is twofold. First, if both polynomial systems are orthogonal, characterize when that linear structure relation exists in terms of their moment functionals. Second, if one of the two polynomial systems is orthogonal, study when the other one is also orthogonal. Finally, some illustrative examples are presented.

MSC:
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C50 Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. 9th printing. Dover, New York (1972) · Zbl 0543.33001
[2] Alfaro, M; Marcellán, F; Peña, A; Rezola, ML, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl., 287, 307-319, (2003) · Zbl 1029.42014
[3] Alfaro, M; Marcellán, F; Peña, A; Rezola, ML, When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials, J. Comput. Appl. Math., 233, 1446-1452, (2010) · Zbl 1187.33004
[4] Alfaro, M; Peña, A; Petronilho, J; Rezola, ML, Orthogonal polynomials generated by a linear structure relation: inverse problem, J. Math. Anal. Appl., 401, 182-197, (2013) · Zbl 1264.33011
[5] Alfaro, M; Peña, A; Rezola, ML; Marcellán, F, Orthogonal polynomials associated with an inverse quadratic spectral transform, Comput. Math. Appl., 61, 888-900, (2011) · Zbl 1217.42050
[6] Beardon, H; Driver, KA, The zeros of linear combinations of orthogonal polynomials, J. Approx. Theory, 137, 179-186, (2005) · Zbl 1088.42012
[7] Berens, H; Schmid, H; Xu, Y, Multivariate Gaussian cubature formula, Arch. Math., 64, 26-32, (1995) · Zbl 0814.41022
[8] Brezinski, C; Driver, KA; Redivo-Zaglia, M, Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math., 48, 157-168, (2004) · Zbl 1047.33002
[9] Chihara, T.S.: An introduction to orthogonal polynomials. Gordon and Breach, New York (1978) · Zbl 0389.33008
[10] Delgado, AM; Fernández, L; Pérez, TE; Piñar, MA, On the Uvarov modification of two variable orthogonal polynomials on the disk, Complex Anal. Oper. Theory, 6, 665-676, (2012) · Zbl 1276.33012
[11] Delgado, AM; Fernández, L; Pérez, TE; Piñar, MA; Xu, Y, Orthogonal polynomials in several variables for measures with mass points, Numer. Algorithms, 55, 245-264, (2010) · Zbl 1205.33020
[12] Delgado, AM; Geronimo, JS; Iliev, P; Xu, Y, On a two-variable class of Bernstein-szegő measures, Constr. Approx., 30, 71-91, (2009) · Zbl 1171.42306
[13] Driver, KA; Jordaan, K, Zeros of linear combinations of Laguerre polynomials from different sequences, J. Comput. Appl. Math., 233, 719-722, (2009) · Zbl 1196.33007
[14] Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge University Press, Cambridge (2001) · Zbl 0964.33001
[15] Fernández, L; Pérez, TE; Piñar, MA; Xu, Y, Krall-type orthogonal polynomials in several variables, J. Comput. Appl. Math., 233, 1519-1524, (2010) · Zbl 1183.33020
[16] Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001
[17] Iserles, A; Koch, PE; Nørsett, SP; Sanz-Serna, JM, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory, 65, 151-175, (1991) · Zbl 0734.42016
[18] Koornwinder, T.H.: Two variable analogues of the classical orthogonal polynomials. In: Askey, R. (ed.) Theory and application of special functions, pp. 435-495. Academic Press, New York (1975) · Zbl 1047.33002
[19] Marcellán, F; Maroni, P, Sur l’adjonction d’une masse de Dirac à une forme régulière et semi-classique, Ann. Mat. Pura Appl., 162, 1-22, (1992) · Zbl 0771.33008
[20] Marcellán, F; Petronilho, J, Orthogonal polynomials and coherent pairs: the classical case, Indag. Math. (N.S.), 6, 287-307, (1995) · Zbl 0843.42010
[21] Maroni, P, Une théorie algébrique des polynômes orthogonaux. applications aux polynômes orthogonaux semi-classiques, IMACS Ann. Comput. Appl. Math., 9, 95-130, (1991) · Zbl 0944.33500
[22] Meijer, HG, Determination of all coherent pairs, J. Approx. Theory, 89, 321-343, (1997) · Zbl 0880.42012
[23] Morrow, CR; Patterson, TNL, Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal., 15, 953-976, (1978) · Zbl 0402.65013
[24] Mysovskikh, I.P. Interpolation cubature formulas. (In Russian) Nauka, Moscow (1981) · Zbl 0537.65019
[25] Pérez, TE; Piñar, MA; Xu, Y, Weighted Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, 171, 84-104, (2013) · Zbl 1281.42026
[26] Schmid, H, On cubature formulae with a minimum number of knots, Numer. Math., 31, 281-297, (1978) · Zbl 0427.65014
[27] Schmid, H; Xu, Y, On bivariate Gaussian cubature formulae, Proc. Amer. Math. Soc., 122, 833-841, (1994) · Zbl 0812.65013
[28] Shohat, JA, On mechanical quadratures, in particular, with positive coefficients, Trans. Am. Math. Soc., 42, 461-496, (1937) · JFM 63.0960.02
[29] Szegő, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Social Colloquium Publishing, Providence (1978) · Zbl 1088.42012
[30] Xu, Y, Gaussian cubature and bivariate polynomial interpolation, Math. Comp., 59, 547-555, (1992) · Zbl 0766.65006
[31] Xu, Y, On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae, SIAM J. Math. Anal., 25, 991-1001, (1994) · Zbl 0809.41028
[32] Xu, Y, A family of Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, 138, 232-241, (2006) · Zbl 1092.42016
[33] Zhedanov, A, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math., 85, 67-86, (1997) · Zbl 0918.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.