# zbMATH — the first resource for mathematics

On linearly related orthogonal polynomials in several variables. (English) Zbl 1295.42006
Summary: Let $$\{\mathbb{P}_{n}\}_{n\geq 0}$$ and $$\{\mathbb{Q}_{n}\}_{n\geq 0}$$ be two monic polynomial systems in several variables satisfying the linear structure relation $\mathbb{Q}_{n} = \mathbb{P}_{n} + M_{n} \mathbb{P}_{n-1}, \quad n\geq 1,$ where $$M_{n}$$ are constant matrices of proper size and $$\mathbb{Q}_{0} = \mathbb{P}_{0}$$. The aim of our work is twofold. First, if both polynomial systems are orthogonal, characterize when that linear structure relation exists in terms of their moment functionals. Second, if one of the two polynomial systems is orthogonal, study when the other one is also orthogonal. Finally, some illustrative examples are presented.

##### MSC:
 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis 33C50 Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable
Full Text:
##### References:
  Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. 9th printing. Dover, New York (1972) · Zbl 0543.33001  Alfaro, M; Marcellán, F; Peña, A; Rezola, ML, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl., 287, 307-319, (2003) · Zbl 1029.42014  Alfaro, M; Marcellán, F; Peña, A; Rezola, ML, When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials, J. Comput. Appl. Math., 233, 1446-1452, (2010) · Zbl 1187.33004  Alfaro, M; Peña, A; Petronilho, J; Rezola, ML, Orthogonal polynomials generated by a linear structure relation: inverse problem, J. Math. Anal. Appl., 401, 182-197, (2013) · Zbl 1264.33011  Alfaro, M; Peña, A; Rezola, ML; Marcellán, F, Orthogonal polynomials associated with an inverse quadratic spectral transform, Comput. Math. Appl., 61, 888-900, (2011) · Zbl 1217.42050  Beardon, H; Driver, KA, The zeros of linear combinations of orthogonal polynomials, J. Approx. Theory, 137, 179-186, (2005) · Zbl 1088.42012  Berens, H; Schmid, H; Xu, Y, Multivariate Gaussian cubature formula, Arch. Math., 64, 26-32, (1995) · Zbl 0814.41022  Brezinski, C; Driver, KA; Redivo-Zaglia, M, Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math., 48, 157-168, (2004) · Zbl 1047.33002  Chihara, T.S.: An introduction to orthogonal polynomials. Gordon and Breach, New York (1978) · Zbl 0389.33008  Delgado, AM; Fernández, L; Pérez, TE; Piñar, MA, On the Uvarov modification of two variable orthogonal polynomials on the disk, Complex Anal. Oper. Theory, 6, 665-676, (2012) · Zbl 1276.33012  Delgado, AM; Fernández, L; Pérez, TE; Piñar, MA; Xu, Y, Orthogonal polynomials in several variables for measures with mass points, Numer. Algorithms, 55, 245-264, (2010) · Zbl 1205.33020  Delgado, AM; Geronimo, JS; Iliev, P; Xu, Y, On a two-variable class of Bernstein-szegő measures, Constr. Approx., 30, 71-91, (2009) · Zbl 1171.42306  Driver, KA; Jordaan, K, Zeros of linear combinations of Laguerre polynomials from different sequences, J. Comput. Appl. Math., 233, 719-722, (2009) · Zbl 1196.33007  Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge University Press, Cambridge (2001) · Zbl 0964.33001  Fernández, L; Pérez, TE; Piñar, MA; Xu, Y, Krall-type orthogonal polynomials in several variables, J. Comput. Appl. Math., 233, 1519-1524, (2010) · Zbl 1183.33020  Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001  Iserles, A; Koch, PE; Nørsett, SP; Sanz-Serna, JM, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory, 65, 151-175, (1991) · Zbl 0734.42016  Koornwinder, T.H.: Two variable analogues of the classical orthogonal polynomials. In: Askey, R. (ed.) Theory and application of special functions, pp. 435-495. Academic Press, New York (1975) · Zbl 1047.33002  Marcellán, F; Maroni, P, Sur l’adjonction d’une masse de Dirac à une forme régulière et semi-classique, Ann. Mat. Pura Appl., 162, 1-22, (1992) · Zbl 0771.33008  Marcellán, F; Petronilho, J, Orthogonal polynomials and coherent pairs: the classical case, Indag. Math. (N.S.), 6, 287-307, (1995) · Zbl 0843.42010  Maroni, P, Une théorie algébrique des polynômes orthogonaux. applications aux polynômes orthogonaux semi-classiques, IMACS Ann. Comput. Appl. Math., 9, 95-130, (1991) · Zbl 0944.33500  Meijer, HG, Determination of all coherent pairs, J. Approx. Theory, 89, 321-343, (1997) · Zbl 0880.42012  Morrow, CR; Patterson, TNL, Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal., 15, 953-976, (1978) · Zbl 0402.65013  Mysovskikh, I.P. Interpolation cubature formulas. (In Russian) Nauka, Moscow (1981) · Zbl 0537.65019  Pérez, TE; Piñar, MA; Xu, Y, Weighted Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, 171, 84-104, (2013) · Zbl 1281.42026  Schmid, H, On cubature formulae with a minimum number of knots, Numer. Math., 31, 281-297, (1978) · Zbl 0427.65014  Schmid, H; Xu, Y, On bivariate Gaussian cubature formulae, Proc. Amer. Math. Soc., 122, 833-841, (1994) · Zbl 0812.65013  Shohat, JA, On mechanical quadratures, in particular, with positive coefficients, Trans. Am. Math. Soc., 42, 461-496, (1937) · JFM 63.0960.02  Szegő, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Social Colloquium Publishing, Providence (1978) · Zbl 1088.42012  Xu, Y, Gaussian cubature and bivariate polynomial interpolation, Math. Comp., 59, 547-555, (1992) · Zbl 0766.65006  Xu, Y, On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae, SIAM J. Math. Anal., 25, 991-1001, (1994) · Zbl 0809.41028  Xu, Y, A family of Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, 138, 232-241, (2006) · Zbl 1092.42016  Zhedanov, A, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math., 85, 67-86, (1997) · Zbl 0918.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.