×

Multivariate central limit theorems for random simplicial complexes. (English) Zbl 1459.60017

Summary: Consider a Poisson point process within a convex set in a Euclidean space. The Vietoris-Rips complex is the clique complex over the graph connecting all pairs of points with distance at most \(\delta\). Summing powers of the volume of all \(k\)-dimensional faces defines the volume-power functionals of these random simplicial complexes. The asymptotic behavior of the volume-power functionals of the Vietoris-Rips complex is investigated as the intensity of the underlying Poisson point process tends to infinity and the distance parameter goes to zero. Univariate and multivariate central limit theorems are proven. Analogous results for the Čech complex are given.

MSC:

60D05 Geometric probability and stochastic geometry
60F05 Central limit and other weak theorems
55U10 Simplicial sets and complexes in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Carlsson, G., Topology and data, Bull. Am. Math. Soc. (N. S.), 46, 255-308 (2009) · Zbl 1172.62002
[2] de Silva, V.; Ghrist, R., Coverage in sensor networks via persistent homology, Algebraic Geom. Topol., 7, 339-358 (2007) · Zbl 1134.55003
[3] Decreusefond, L.; Ferraz, E.; Randriam, H.; Vergne, A., Simplicial homology of random configurations, Adv. Appl. Probab., 46, 1-20 (2014) · Zbl 1296.60127
[4] Ghrist, R., Barcodes: the persistent topology of data, Bull. Am. Math. Soc. (N. S.), 45, 61-75 (2008) · Zbl 1391.55005
[5] Lachiéze-Rey, R.; Peccati, G., Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics, Stoch. Process. Appl., 123, 4186-4218 (2013) · Zbl 1294.60082
[6] Lachiéze-Rey, R.; Peccati, G., Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs, Electron. J. Probab., 18, 32 (2013) · Zbl 1295.60015
[7] Lachiéze-Rey, R.; Schulte, M.; Yukich, J. E., Normal approximation for stabilizing functionals, Ann. Appl. Probab., 29, 931-993 (2019) · Zbl 1466.60047
[8] Last, G.; Nestmann, F.; Schulte, M., The random connection model and functions of edge-marked Poisson processes: second order properties and normal approximation · Zbl 1476.60053
[9] Last, G.; Penrose, M. D., Lectures on the Poisson Process, Institute of Mathematical Statistics Textbooks, vol. 7 (2018), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1392.60004
[10] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, (Putinar, M.; Sullivant, S., Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer: Springer New York), 157-270 · Zbl 1163.13021
[11] (Peccati, G.; Reitzner, M., Stochastic Analysis for Poisson Point Processes (2016), Bocconi University Press) · Zbl 1350.60005
[12] Penrose, M. D., Random Geometric Graphs (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1029.60007
[13] Reitzner, M.; Schulte, M., Central limit theorems for U-statistic of Poisson point processes, Ann. Probab., 41, 3879-3909 (2013) · Zbl 1293.60061
[14] Reitzner, M.; Schulte, M.; Thäle, C., Limit theory for the Gilbert graph, Adv. Appl. Math., 88, 26-61 (2017) · Zbl 1373.60026
[15] Schneider, R.; Weil, W., Stochastic and Integral Geometry (2008), Springer: Springer Berlin · Zbl 1175.60003
[16] Schulte, M., Malliavin-Stein Method in Stochastic Geometry (2013), Universität Osnabrück, PhD thesis
[17] Schulte, M., Normal approximation of Poisson functionals in Kolmogorov distance, J. Theor. Probab., 29, 96-117 (2016) · Zbl 1335.60027
[18] Schulte, M.; Yukich, J. E., Multivariate second order Poincarè inequalities for Poisson functionals, Electron. J. Probab., 24, 130 (2019) · Zbl 1430.60030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.