×

The large-charge expansion for Schrödinger systems. (English) Zbl 1405.81126

Summary: In this note, we perform the large-charge expansion for non-relativistic systems with a global U(1) symmetry in 3 + 1 and 2 + 1 space-time dimensions, motivated by applications to the unitary Fermi gas and anyons. These systems do not have full conformal invariance, but are invariant under the Schrödinger group. Also here, the low-energy physics is encoded by a Goldstone boson which is due to the breaking of the global symmetry when fixing the charge. We find that in 2 + 1 dimensions and higher, there is a large-charge expansion in which quantum corrections are suppressed with respect to the next-to-leading order terms in the Lagrangian. We give the next-to-leading-order expressions for the ground state energy and the speed of sound.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R40 Symmetry breaking in quantum theory
81S10 Geometry and quantization, symplectic methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP12 (2015) 071 [arXiv:1505.01537] [INSPIRE]. · Zbl 1388.81672
[2] L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP04 (2017) 059 [arXiv:1610.04495] [INSPIRE]. · Zbl 1378.81099 · doi:10.1007/JHEP04(2017)059
[3] O. Loukas, Abelian scalar theory at large global charge, Fortsch. Phys.65 (2017) 1700028 [arXiv:1612.08985] [INSPIRE]. · doi:10.1002/prop.201700028
[4] A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP06 (2017) 011 [arXiv:1611.02912] [INSPIRE]. · Zbl 1380.81350 · doi:10.1007/JHEP06(2017)011
[5] S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, arXiv:1705.05825 [INSPIRE]. · Zbl 1427.81133
[6] S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, Observables in Inhomogeneous Ground States at Large Global Charge, arXiv:1804.06495 [INSPIRE]. · Zbl 1427.81133
[7] O. Loukas, D. Orlando and S. Reffert, Matrix models at large charge, JHEP10 (2017) 085 [arXiv:1707.00710] [INSPIRE]. · Zbl 1383.81245 · doi:10.1007/JHEP10(2017)085
[8] O. Loukas, A matrix CFT at multiple large charges, JHEP06 (2018) 164 [arXiv:1711.07990] [INSPIRE]. · Zbl 1395.81233 · doi:10.1007/JHEP06(2018)164
[9] S. Hellerman and S. Maeda, On the Large R-charge Expansion \[inN=2 \mathcal{N}=2\] Superconformal Field Theories, JHEP12 (2017) 135 [arXiv:1710.07336] [INSPIRE]. · Zbl 1383.81226
[10] S. Hellerman, S. Maeda and M. Watanabe, Operator Dimensions from Moduli, JHEP10 (2017) 089 [arXiv:1706.05743] [INSPIRE]. · Zbl 1383.81227 · doi:10.1007/JHEP10(2017)089
[11] S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal correlation functions in rank 1 SCFTs, arXiv:1804.01535 [INSPIRE]. · Zbl 1431.81144
[12] A. Bourget, D. Rodriguez-Gomez and J.G. Russo, A limit for large R-charge correlators \[inN=2 \mathcal{N}=2\] theories, JHEP05 (2018) 074 [arXiv:1803.00580] [INSPIRE]. · Zbl 1391.81149
[13] G. Cuomo, A. de la Fuente, A. Monin, D. Pirtskhalava and R. Rattazzi, Rotating superfluids and spinning charged operators in conformal field theory, Phys. Rev.D 97 (2018) 045012 [arXiv:1711.02108] [INSPIRE].
[14] D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP05 (2018) 043 [arXiv:1710.11161] [INSPIRE]. · Zbl 1391.81166 · doi:10.1007/JHEP05(2018)043
[15] O. Loukas, D. Orlando, S. Reffert and D. Sarkar, An AdS/EFT correspondence at large charge, Nucl. Phys.B 934 (2018) 437 [arXiv:1804.04151] [INSPIRE]. · Zbl 1395.81174
[16] D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett.120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].
[17] A. De La Fuente, The large charge expansion at large N , JHEP08 (2018) 041 [arXiv:1805.00501] [INSPIRE]. · Zbl 1396.81187 · doi:10.1007/JHEP08(2018)041
[18] M. Randeria, W. Zwerger and M. Zwierlein, The BCS-BEC Crossover and the Unitary Fermi Gas, Springer, Lect. Notes Phys.836 (2012) 1.
[19] W. Bakr et al., Strongly interacting Fermi gases, EPJ Web Conf.57 (2013) 01002.
[20] D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys.321 (2006) 197 [cond-mat/0509786] [INSPIRE]. · Zbl 1107.82419
[21] Y.-H. Chen, F. Wilczek, E. Witten and B.I. Halperin, On Anyon Superconductivity, Int. J. Mod. Phys.B 3 (1989) 1001 [INSPIRE].
[22] R. Jackiw and S.-Y. Pi, Finite and infinite symmetries in (2 + 1)-dimensional field theory, hep-th/9206092 [INSPIRE]. · Zbl 0991.81549
[23] O. Bergman and G. Lozano, Aharonov-Bohm scattering, contact interactions and scale invariance, Annals Phys.229 (1994) 416 [hep-th/9302116] [INSPIRE]. · doi:10.1006/aphy.1994.1013
[24] Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev.D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].
[25] S.M. Kravec and S. Pal, Nonrelativistic Conformal Field Theories in the Large Charge Sector, arXiv:1809.08188 [INSPIRE]. · Zbl 1411.81183
[26] M. Greiter, F. Wilczek and E. Witten, Hydrodynamic Relations in Superconductivity, Mod. Phys. Lett.B 3 (1989) 903 [INSPIRE].
[27] H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].
[28] N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett.17 (1966) 1133 [INSPIRE]. · doi:10.1103/PhysRevLett.17.1133
[29] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.31 (1973) 259 [INSPIRE]. · Zbl 1125.81321 · doi:10.1007/BF01646487
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.