×

zbMATH — the first resource for mathematics

Similarity solutions of some two-space-dimensional nonlinear wave evolution equations. (English) Zbl 0459.35077

MSC:
35Q99 Partial differential equations of mathematical physics and other areas of application
35K55 Nonlinear parabolic equations
35L70 Second-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ince, Ordinary Differential Equations pp 345– (1956)
[2] Kadomtsev, On the stability of solitary waves in weakly dispersive media, Soviet Physics DOKL. 15 pp 539– (1970)
[3] Ablowitz, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 pp 2180– (1978) · Zbl 0418.35022 · doi:10.1063/1.523550
[4] Miles, Resonantly interacting solitary waves, J. Fluid Mech. 79 pp 171– (1977) · Zbl 0353.76015 · doi:10.1017/S0022112077000093
[5] Newell, Breakdown of Zakharov-Shabat theory and soliton creation, Phys. Rev. Lett. 38 pp 377– (1977) · doi:10.1103/PhysRevLett.38.377
[6] Miles, An axisymmetric Boussinesq wave, J. Fluid Mech. 84 pp 181– (1978) · Zbl 0365.76023 · doi:10.1017/S0022112078000105
[7] Ablowitz, Asymptotic solutions of the Korteweg-deVries equation, Stud. Appl. Math 57 pp 13– (1977) · Zbl 0369.35055 · doi:10.1002/sapm197757113
[8] Haberman, Nonlinear transition layers-The second Painlevé Transcendent, Studies in Appl. Math. 57 pp 247– (1977) · Zbl 0376.34024 · doi:10.1002/sapm1977573247
[9] Rosales, The similarity solution for the Korteweg-deVries equation and the related Painlevé transcendent, Proc. Roy. Soc. Lond. Ser. A. 361 pp 265– (1978) · Zbl 0384.65041 · doi:10.1098/rspa.1978.0102
[10] Miles, On the second Painlevé transcendent, Proc. Roy. Soc. Lond. Ser. A. 361 pp 277– (1978) · Zbl 0384.65042 · doi:10.1098/rspa.1978.0103
[11] Ablowitz, An exact linearization of a Painleve transcendent, Phys. Rev. Lett. 38 pp 1103– (1977) · doi:10.1103/PhysRevLett.38.1103
[12] Ablowitz, A note on Miura’s transformation, J. Math. Phys 20 pp 999– (1979) · Zbl 0425.35005 · doi:10.1063/1.524197
[13] Zakharov, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Functional Anal. Appl. 8 pp 226– (1974) · Zbl 0303.35024 · doi:10.1007/BF01075696
[14] Djordjevic, The fission and disintegration of internal solitary waves moving over two-dimensional topography, J. Phys. Oceanography 8 pp 1016– (1978) · doi:10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO;2
[15] Ablowitz, Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuovo Cimento 23 pp 333– (1978) · doi:10.1007/BF02824479
[16] Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 pp 559– (1967) · Zbl 0147.46502 · doi:10.1017/S002211206700103X
[17] Davis, Solitary internal waves in deep water, J. Fluid Mech. 29 pp 593– (1967) · Zbl 0147.46503 · doi:10.1017/S0022112067001041
[18] Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 pp 1982– (1975) · Zbl 1334.76027 · doi:10.1143/JPSJ.39.1082
[19] Chen, Algebraic internal wave solitons and the integrable Calogero-Moser-Sutherland N-body problem, Phys. Fluids 22 pp 187– (1979) · doi:10.1063/1.862457
[20] Djordjevic, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 pp 703– (1977) · Zbl 0351.76016 · doi:10.1017/S0022112077000408
[21] Ablowitz, On the evolution of packets of waterwaves, J. Fluid Mech. 92 pp 691– (1979) · Zbl 0413.76009 · doi:10.1017/S0022112079000835
[22] Benney, The propagation of nonlinear wave envelopes, J. Math. Phys. 46 pp 133– (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[23] Saffman, Stability of a plane soliton to infinitesimal two-dimensional perturbations, Phys. Fluids 21 pp 1450– (1978) · Zbl 0384.76008 · doi:10.1063/1.862364
[24] Zakharov, The nature of the self-focusing singularity, Soviet Physics JETP 41 pp 465– (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.