×

zbMATH — the first resource for mathematics

The coupling of gravity waves and convection: Amplitude equations and planform selection. (English) Zbl 0814.76043
Summary: Convective motion in a layer of fluid heated from below is considered where the boundaries are stress free and the upper surface supports interfacial gravity waves. Inviscid, immiscible, constant density, ambient fluid is separated from the convecting layer below by a stable density jump. An important parameter in the problem is \(\delta\) representing the ratio of the interfacial density jump to the density change across the convecting layer. Amplitude equations are derived describing convective motion in the plane, and a planform selection analysis is performed. It is demonstrated that the breaking of the translational and Galilean invariance of the problem allows a strong coupling between a large-scale interfacial mode and convection. The resulting phase dynamics is third order in time.

MSC:
76E15 Absolute and convective instability and stability in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76R10 Free convection
76D33 Waves for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1961)
[2] Busse, Nonlinear properties of thermal convection, Rep. Progr. Phys. 41 pp 1929– (1978) · doi:10.1088/0034-4885/41/12/003
[3] Busse, Hydrodynamic Instabilities and the Transition to Turbulence pp 97– (1981)
[4] NormanD, Convective instability: A physicist’s approach, Rev. Modem Phys. 49 pp 581– (1977) · doi:10.1103/RevModPhys.49.581
[5] Palm, Nonlinear thermal convection, Ann. Rev. Fluid Mech. 7 pp 39– (1975) · Zbl 0358.76038 · doi:10.1146/annurev.fl.07.010175.000351
[6] Davis, Thermocapillary instabilities, Ann. Rev. Fluid Mech. 19 pp 403– (1987) · Zbl 0679.76052 · doi:10.1146/annurev.fl.19.010187.002155
[7] Scriven, On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity, J. Fluid Mech. 19 pp 321– (1969) · Zbl 0123.42203 · doi:10.1017/S0022112064000751
[8] Nield, Surface tension and buoyancy effects in cellular convection, J. Fluid Mech. 19 pp 341– (1964) · Zbl 0123.42204 · doi:10.1017/S0022112064000763
[9] Zeren, Thermal instabilities in two-fluid horizontal layers, J. Fluid Mech. 53 pp 305– (1972) · Zbl 0265.76057 · doi:10.1017/S0022112072000175
[10] Renardy, Oscillatory instability in a Bénard problem of two fluids, Phys. Fluids 28 pp 788– (1985) · Zbl 0586.76065 · doi:10.1063/1.865046
[11] Renardy, Perturbation analysis of steady and oscillatory onset in a Bénard problem with two similar liquids, Phys. Fluids 28 pp 2699– (1985) · Zbl 0606.76054 · doi:10.1063/1.865227
[12] Renardy, Interfacial stability in a two-layer Bénard problem, Phys. Fluids 29 pp 356– (1986) · Zbl 0604.76030 · doi:10.1063/1.865719
[13] Rasenat, A theoretical and experimental study of double-layer convection, J. Fluid Mech 199 pp 519– (1989) · Zbl 0659.76115 · doi:10.1017/S0022112089000467
[14] Benguria, Oscillatory instabilities in the Rayleigh-Bénard problem with a free surface, Phys. Fluids 30 pp 1678– (1987) · doi:10.1063/1.866232
[15] Palm, On the tendency towards hexagonal cells in steady convection, J. Fluid Mech. 8 pp 183– (1960) · Zbl 0100.23302 · doi:10.1017/S0022112060000530
[16] Segel, On the question of the preferred mode in cellular thermal convection, J. Fluid Mech. 13 pp 289– (1962) · Zbl 0116.19101 · doi:10.1017/S0022112062000683
[17] Palm, Contribution to the theory of cellular convection, J. Fluid Mech. 19 pp 353– (1964) · Zbl 0126.22202 · doi:10.1017/S0022112064000775
[18] Segel, The nonlinear interaction of a finite number of disturbances to a layer of fluid heated from below, J. Fluid Mech. 21 pp 359– (1965) · Zbl 0244.76024 · doi:10.1017/S002211206500023X
[19] Schluter, On the stability of steady finite amplitude convection, J. Fluid Mech. 23 pp 129– (1965) · Zbl 0134.21801 · doi:10.1017/S0022112065001271
[20] Scanlon, Finite amplitude cellular convection induced by surface tension, J. Fluid Mech. 30 pp 149– (1967) · Zbl 0234.76066 · doi:10.1017/S002211206700134X
[21] Newell, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 pp 279– (1969) · Zbl 0187.25102 · doi:10.1017/S0022112069000176
[22] Siggia, Pattern selection in Rayleigh-Bénard convection near threshold, Phys. Rev. Lett. 47 pp 835– (1981) · doi:10.1103/PhysRevLett.47.835
[23] Zippelius, Stability of finite amplitude convection, Phys. Fluids 26 pp 2905– (1983) · Zbl 0537.76016 · doi:10.1063/1.864055
[24] Busse, Instabilities of convection rolls with stress-free boundaries near threshold, J. Fluid Mech. 146 pp 115– (1984) · Zbl 0561.76052 · doi:10.1017/S0022112084001786
[25] Coullet, Resonance and phase solitons in spatially-forced thermal convection, Physica. D 23 pp 27– (1986) · Zbl 0621.76043 · doi:10.1016/0167-2789(86)90107-7
[26] Goldstein, Stability of a horizontal fluid layer with zero shear boundaries, Phys. Fluids 12 pp 1133– (1969) · doi:10.1063/1.1692642
[27] Coullet, Propagative phase dynamics for systems with Galilean invariance, Phys. Rev. Lett. 55 pp 2857– (1985) · doi:10.1103/PhysRevLett.55.2857
[30] Sil’nikov, A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl. 6 pp 163– (1965)
[31] Arnéodo, Asymptotic chaos, Physica. D 14 pp 327– (1989) · Zbl 0595.58030 · doi:10.1016/0167-2789(85)90093-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.