×

zbMATH — the first resource for mathematics

Formulas for the width of interval products. (English) Zbl 0844.65039
The authors derive new formulas for the width of the product of two (or more) intervals. The formulas produce sharp inclusions and make use of Ratschek’s functional \(\chi\).
Reviewer: S.Markov (Sofia)

MSC:
65G30 Interval and finite arithmetic
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alefeld, G. and Herzberger, J.Einführung in die Intervallrechnung Bibliographisches Institut, Zürich, 1974.
[2] Alefeld, G. and Herzberger, J.Introduction to interval computations. Academic Press, New York. 1983. · Zbl 0552.65041
[3] Alefeld, G., Gienger, A., and Potra, F.Efficient numerical validation of solutions of nonlinear systems. SIAM J. Numer. Anal.31 (1994), pp. 252–260. · Zbl 0796.65068 · doi:10.1137/0731013
[4] Cornelius, H. andLohner, R. Computing the range of values of real functions with accuracy higher than second order. Computing33 (1984), pp. 331–347. · Zbl 0556.65037 · doi:10.1007/BF02242276
[5] Kearfou, R. B. Abstract generalized bisection and a cost bound. Math. of Comput.49 (1987), pp. 187–202. · Zbl 0632.65055 · doi:10.1090/S0025-5718-1987-0890261-9
[6] Kearfott, R. B. Preconditioners for the interval Gauss-Seidel method. SIAM J. Numer. Anal.27 (1990), pp. 804–822. · Zbl 0713.65037 · doi:10.1137/0727047
[7] Krawczyk, R. andNeumaier, A. An improved interval Newton operator J. Math. Anal. Appl.118 (1986), pp. 194–207. · Zbl 0602.65033 · doi:10.1016/0022-247X(86)90303-3
[8] Moore, R. E. The automatic analysis and control of error in digital computation based on the use of interval numbers.In: Rall, L. B. (ed.) ”Error in Digital Computation”, Vol. 1, Proceedings of an advanced seminar. University of Madison, 1965, pp. 61–130.
[9] Moore, R. E. Interval analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966. · Zbl 0176.13301
[10] Olver, F. W. A new approach to error arithmetic. SIAM J. Number. Analysis2 (1982), pp. 368–392. · Zbl 0385.65019
[11] Olver, F. W. Further developments of rp and ap analysis. IMA J. Number. Analysis2 (1982), pp. 249–274. · Zbl 0491.65028 · doi:10.1093/imanum/2.3.249
[12] Rall, L. B. Representations of intervals and optimal error bounds. Math. of Computation41 (1983), pp. 219–227. · Zbl 0517.65026 · doi:10.1090/S0025-5718-1983-0701636-9
[13] Ratschek, H. Die binären Systeme der Intervallmathematik. Computing6 (1970), pp. 295–308. · Zbl 0222.65003 · doi:10.1007/BF02238814
[14] Ratschek, H. Die Subdistributivität in der Intervallmathematik. Z. Angew. Math. Mech.51 (1971), pp. 189–192. · Zbl 0214.40902 · doi:10.1002/zamm.19710510305
[15] Ratschek, H. andRokne, J. The transistor modeling problem again. Microelectronics and Reliability32 (1992), pp. 1725–1740. · doi:10.1016/0026-2714(92)90270-U
[16] Ratschek, H. andSauer, W. Linear interval equations. Computing28 (1982), pp. 105–115. · Zbl 0468.65025 · doi:10.1007/BF02241817
[17] Ris, F. N. Interval analysis and applications to linear algebra. Ph. D. Thesis, Oxford University, 1972.
[18] Rump, S. Personal communication. See [2] p. 18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.