Rao, T. J.; Swain, A. K. P. C. A note on the Hartley-Ross unbiased ratio estimator. (English) Zbl 1297.62022 Commun. Stat., Theory Methods 43, No. 15, 3162-3169 (2014). Summary: In this article, we will construct an alternative Hartley-Ross unbiased ratio estimator for the population mean of a study variable when related auxiliary information is available. We will also present some efficiency comparisons and related results and give a numerical illustration. MSC: 62D05 Sampling theory, sample surveys Keywords:ratio estimator; unbiasedness; Hartley-Ross estimator PDF BibTeX XML Cite \textit{T. J. Rao} and \textit{A. K. P. C. Swain}, Commun. Stat., Theory Methods 43, No. 15, 3162--3169 (2014; Zbl 1297.62022) Full Text: DOI References: [1] Al-Jararha J., Unbiased Ratio Estimation for Finite Populations (2008) [2] DOI: 10.1002/bimj.4710340807 · Zbl 04510800 · doi:10.1002/bimj.4710340807 [3] Farrel P.J., Joint Statistical Meetings of the American Statistical Association, Survey Research Methods Section (2002) [4] DOI: 10.1080/01621459.1958.10501454 · doi:10.1080/01621459.1958.10501454 [5] DOI: 10.1038/174270a0 · doi:10.1038/174270a0 [6] DOI: 10.1093/biomet/58.2.313 · Zbl 0226.62011 · doi:10.1093/biomet/58.2.313 [7] Khan K. U., Linear Calibrated Estimators of a Finite Population Total (2010) [8] Rao J. N.K., New Developments in Survey Sampling pp 213– (1968) [9] DOI: 10.1016/S0378-3758(01)00270-1 · doi:10.1016/S0378-3758(01)00270-1 [10] DOI: 10.1080/01621459.1969.10500994 · doi:10.1080/01621459.1969.10500994 [11] Rao P. S. R. S., Sankhya 37 pp 140– (1975) [12] DOI: 10.1016/S0169-7161(88)06020-1 · doi:10.1016/S0169-7161(88)06020-1 [13] DOI: 10.1016/S0378-3758(01)00181-1 · Zbl 1004.62010 · doi:10.1016/S0378-3758(01)00181-1 [14] DOI: 10.1016/j.jspi.2009.08.008 · Zbl 1267.62019 · doi:10.1016/j.jspi.2009.08.008 [15] DOI: 10.1080/01621459.1957.10501407 · doi:10.1080/01621459.1957.10501407 [16] DOI: 10.1007/BF02562658 · Zbl 0765.62017 · doi:10.1007/BF02562658 [17] Singh H.P., Cal. Statist. Assoc. Bull. 43 (169) pp 127– (1993) · Zbl 0800.62112 · doi:10.1177/0008068319930113 [18] DOI: 10.1016/S0378-3758(00)00325-6 · Zbl 0989.62009 · doi:10.1016/S0378-3758(00)00325-6 [19] DOI: 10.1111/j.1751-5823.2007.00013.x · doi:10.1111/j.1751-5823.2007.00013.x [20] DOI: 10.1038/1961238a0 · Zbl 0112.10503 · doi:10.1038/1961238a0 [21] DOI: 10.1080/01621459.1962.10500551 · doi:10.1080/01621459.1962.10500551 [22] DOI: 10.2307/2527992 · doi:10.2307/2527992 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.