×

Parameter-robust numerical method for time-dependent weakly coupled linear system of singularly perturbed convection-diffusion equations. (English) Zbl 1406.65064

Summary: We present a parameter-robust numerical method for a time-dependent weakly coupled linear system of singularly perturbed convection-diffusion equations. A small perturbation parameter multiplies the second order spatial derivative in all the equations. The proposed numerical method uses backward Euler method in time direction on an uniform mesh together with a suitable combination of HODIE scheme and the central difference scheme in spatial direction on a Shishkin mesh. It is proved that the numerical method is parameter-robust of first order in time and almost second order in space. Numerical results are given in support of theoretical findings.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Clavero, C., Gracia, J.L., Lisbona, F.: High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type. Numer. Algorithms 22, 73-97 (1999) · Zbl 1083.65514 · doi:10.1023/A:1019150606200
[2] Clavero, C., Gracia, J.L., Jorge, J.C.: High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Meth. Part. Diff. Equat. 21, 149-169 (2005) · Zbl 1073.65079 · doi:10.1002/num.20030
[3] Clavero, C., Gracia, J.L., Stynes, M.: A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems. J. Comput. Appl. Math. 235, 5240-5248 (2011) · Zbl 1225.65084 · doi:10.1016/j.cam.2011.05.025
[4] Kadalbajoo, M.K., Awasthi, A.: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension. Appl. Math. Comput. 183, 42-60 (2006) · Zbl 1110.65079
[5] Kellogg, R.B., Tsan, A.: n Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32, 1025-1039 (1978) · Zbl 0418.65040 · doi:10.1090/S0025-5718-1978-0483484-9
[6] Kopteva, N.: Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes. Computing 66, 179-197 (2001) · Zbl 0978.65075 · doi:10.1007/s006070170034
[7] Lenferink, W.: A second order scheme for a time-dependent singularly perturbed convection-diffusion equation. J. Comput. Appl. Math. 143, 49-68 (2002) · Zbl 1007.65075 · doi:10.1016/S0377-0427(01)00502-7
[8] Linss, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Springer-Verlog, Berlin (2010) · Zbl 1202.65120 · doi:10.1007/978-3-642-05134-0
[9] Marchuk, G.I.: Methods of Numerical Mathematics. Springer, New York (1982) · Zbl 0485.65003 · doi:10.1007/978-1-4613-8150-1
[10] Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd edn. Springer-Verlag, Berlin (2008) · Zbl 1155.65087
[11] Samarskii, A.A.: Theory of Difference Schemes. Published in English by Marcel Dekker, CRC Press (2001) · Zbl 0971.65076
[12] Shishkin, G.I.: Grid approximation of singularly perturbed boundary value problems for systems of elliptic and parabolic equations. Comp. Maths. Math. Phys. 35, 429-446 (1995) · Zbl 0852.65071
[13] Shishkin, G.I.: Grid approximation of singularly perturbed systems of elliptic and parabolic equations with convective terms. Differ. Equ. 34, 1693-1704 (1998) · Zbl 0951.65084
[14] Stynes, M., Tobiska, L.: A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms 18, 337-360 (1998) · Zbl 0916.65108 · doi:10.1023/A:1019185802623
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.