zbMATH — the first resource for mathematics

Generalized random energy model. (English) Zbl 1124.82008
The authors apply large deviation methods to obtain the free energy and some further results for the GREM (Generalized Random Energy Models), following mainly the approach recently used by Dorlas and coworkers.
There have been a number of other recent studies of such models, with more detailed results, in particular by A. Bovier and I. Kurkova [Commun. Math. Phys. 263, No. 2, 535–552 (2006; Zbl 1104.82027)], as for example are described in Bovier’s recent book. Most of those are worked out for models with Gaussian randomness. Here the authors also include non-Gaussian disorder, as was earlier done by for example Eisele.

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI
[1] A. Bovier and I. Kurkova, Derrida’s generalized random energy models. 1. Models with finitely many hierarchies. Ann. Inst. H. Poincare. Prob. et Statisques (B) Prob. Stat. 40:439–480 (2004) · Zbl 1121.82020 · doi:10.1016/j.anihpb.2003.09.002
[2] A. Bovier and I. Kurkova, Derrida’s generalized random energy models. 2. Models with continuous hierarchies. Ann. Inst. H. Poincare. Prob. et Statisques (B) Prob. Stat. 40:480–485 (2004) · Zbl 1121.82020
[3] D. Capocaccia, M. Cassandro and P. Pico, On the existance of thermodynamics for the generalized random energy model. J. Stat. Phys. 46:493–505 (1987) · doi:10.1007/BF01013370
[4] P. Contucci, M. D. Esposti, C. Giardinà and S. Graffi, Thermodynamical limit for correlated Gaussian random energy models. Commun. Math. Phys. 236:55–63 (2003) · Zbl 1023.82003 · doi:10.1007/s00220-003-0803-y
[5] P. Carmona, and Y. Hu, Universaity in Sherrington-Kirkpatrick’s spin glass model. arXiv:math.PR/0403359 v2. (2004)
[6] A. Dembo and O. Zeitouni, LARGE DEVIATION: Techniques and Applications, 2nd Ed. (Springer-Verlag, New York, 1998) · Zbl 0896.60013
[7] B. Derrida, A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46:401–407 (1985) · doi:10.1051/jphyslet:01985004609040100
[8] T. C. Dorlas and W. M. B. Dukes, Large deviation approach to the generalized random energy model. J. Phys. A: Math. Gen. 35:4385–4394 (2002) · Zbl 1066.82024 · doi:10.1088/0305-4470/35/20/301
[9] T. C. Dorlas and J. R. Wedagedera, Large deviations and the random energy model. Int. J. Mod. Phy. B 15(1):1–15 (2001) · Zbl 1192.82043 · doi:10.1142/S0217979201002552
[10] R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Spring-Verlag, New York, 1985) · Zbl 0566.60097
[11] T. Eisele, On a third-order phase transition. Commun. Math. Phys. 90:125–159 (1983) · Zbl 0526.60093 · doi:10.1007/BF01209390
[12] F. Guerra and F. L. Toninelli, The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230:71–79 (2002) · Zbl 1004.82004 · doi:10.1007/s00220-002-0699-y
[13] N. K. Jana, Exponential random energy model. arXiv: math.PR/0602670. (2005)
[14] M. Talagrand, SPIN GLASSES: A Challenge for Mathematicians (Spring-Verlag, New York, 2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.