×

zbMATH — the first resource for mathematics

Non-supersymmetric heterotic model building. (English) Zbl 1333.81315
Summary: We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic \(\mathrm{SO}(16)\times \mathrm{SO}(16)\) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the \(N=0\) theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J81 Relationships with physics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
Software:
Orbifolder
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Candelas, P.; Horowitz, GT; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys., B 258, 46, (1985)
[2] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett., B 633, 783, (2006)
[3] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A heterotic standard model, Phys. Lett., B 618, 252, (2005)
[4] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A standard model from the E_{8} × E_{8} heterotic superstring, JHEP, 06, 039, (2005)
[5] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., The exact MSSM spectrum from string theory, JHEP, 05, 043, (2006)
[6] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev., D 84, 106005, (2011)
[7] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012)
[8] Anderson, LB; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, JHEP, 01, 047, (2014)
[9] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds, Nucl. Phys., B 261, 678, (1985)
[10] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds. 2, Nucl. Phys., B 274, 285, (1986)
[11] Ibáñez, LE; Nilles, HP; Quevedo, F., Orbifolds and Wilson lines, Phys. Lett., B 187, 25, (1987)
[12] Ibáñez, LE; Mas, J.; Nilles, H-P; Quevedo, F., Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys., B 301, 157, (1988)
[13] Bailin, D.; Love, A., Orbifold compactifications of string theory, Phys. Rept., 315, 285, (1999)
[14] K.-S. Choi and J.E. Kim Quarks and leptons from orbifolded superstring, Springer, Heidelberg Germany (2006).
[15] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. Rev. Lett., 96, 121602, (2006)
[16] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. Rev. Lett., 96, 121602, (2006)
[17] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007)
[18] Lebedev, O.; Nilles, HP; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, PKS, Heterotic mini-landscape. (II). completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett., B 668, 331, (2008)
[19] Mayorga Pena, DK; Nilles, HP; Oehlmann, P-K, A zip-code for quarks, leptons and Higgs bosons, JHEP, 12, 024, (2012)
[20] J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z(12) orbifold, hep-th/0608085 [INSPIRE].
[21] Kim, JE; Kim, J-H; Kyae, B., Superstring standard model from Z(12 − I) orbifold compactification with and without exotics and effective R-parity, JHEP, 06, 034, (2007)
[22] Groot Nibbelink, S.; Loukas, O., MSSM-like models on Z(8) toroidal orbifolds, JHEP, 12, 044, (2013)
[23] H.P. Nilles and P.K.S. Vaudrevange, Geography of fields in extra dimensions: string theory lessons for particle physics, arXiv:1403.1597 [INSPIRE].
[24] Groot Nibbelink, S.; Held, J.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, Heterotic Z(6 − II) MSSM orbifolds in blowup, JHEP, 03, 005, (2009)
[25] Blaszczyk, M.; etal., A Z_{2} × Z_{2} standard model, Phys. Lett., B 683, 340, (2010)
[26] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, Heterotic MSSM on a resolved orbifold, JHEP, 09, 065, (2010)
[27] Particle Data Group collaboration; Beringer, J.; etal., Review of particle physics (RPP), Phys. Rev., D 86, 010001, (2012)
[28] Dienes, KR, Modular invariance, finiteness and misaligned supersymmetry: new constraints on the numbers of physical string states, Nucl. Phys., B 429, 533, (1994)
[29] Dienes, KR, Statistics on the heterotic landscape: gauge groups and cosmological constants of four-dimensional heterotic strings, Phys. Rev., D 73, 106010, (2006)
[30] Shiu, G.; Tye, SHH, Bose-Fermi degeneracy and duality in nonsupersymmetric strings, Nucl. Phys., B 542, 45, (1999)
[31] Kawai, H.; Lewellen, DC; Tye, SHH, Classification of closed fermionic string models, Phys. Rev., D 34, 3794, (1986)
[32] Blum, JD; Dienes, KR, Duality without supersymmetry: the case of the SO(16) × SO(16) string, Phys. Lett., B 414, 260, (1997)
[33] Faraggi, AE; Tsulaia, M., On the low energy spectra of the nonsupersymmetric heterotic string theories, Eur. Phys. J., C 54, 495, (2008)
[34] Lerche, W.; Lüst, D.; Schellekens, AN, Ten-dimensional heterotic strings from niemeier lattices, Phys. Lett., B 181, 71, (1986)
[35] Lerche, W.; Lüst, D.; Schellekens, AN, Chiral four-dimensional heterotic strings from selfdual lattices, Nucl. Phys., B 287, 477, (1987)
[36] Held, J.; Lüst, D.; Marchesano, F.; Martucci, L., DWSB in heterotic flux compactifications, JHEP, 06, 090, (2010)
[37] A. Sagnotti, Some properties of open string theories, hep-th/9509080 [INSPIRE].
[38] Sagnotti, A., Surprises in open string perturbation theory, Nucl. Phys. Proc. Suppl., 56B, 332, (1997)
[39] Angelantonj, C., Nontachyonic open descendants of the 0B string theory, Phys. Lett., B 444, 309, (1998)
[40] Sugimoto, S., Anomaly cancellations in type-I d9-d9 system and the usp(32) string theory, Prog. Theor. Phys., 102, 685, (1999)
[41] Blumenhagen, R.; Font, A.; Lüst, D., Tachyon free orientifolds of type 0B strings in various dimensions, Nucl. Phys., B 558, 159, (1999)
[42] Aldazabal, G.; Ibáñez, LE; Quevedo, F., Standard-like models with broken supersymmetry from type-I string vacua, JHEP, 01, 031, (2000)
[43] Moriyama, S., Usp(32) string as spontaneously supersymmetry broken theory, Phys. Lett., B 522, 177, (2001)
[44] Gato-Rivera, B.; Schellekens, AN, Non-supersymmetric tachyon-free type-II and type-I closed strings from RCFT, Phys. Lett., B 656, 127, (2007)
[45] Gato-Rivera, B.; Schellekens, AN, Non-supersymmetric orientifolds of Gepner models, Phys. Lett., B 671, 105, (2009)
[46] Dixon, LJ; Harvey, JA, String theories in ten-dimensions without space-time supersymmetry, Nucl. Phys., B 274, 93, (1986)
[47] Álvarez-Gaumé, L.; Ginsparg, PH; Moore, GW; Vafa, C., An O(16) × O(16) heterotic string, Phys. Lett., B 171, 155, (1986)
[48] Narain, KS; Sarmadi, MH; Witten, E., A note on toroidal compactification of heterotic string theory, Nucl. Phys., B 279, 369, (1987)
[49] Narain, KS, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett., B 169, 41, (1986)
[50] Nair, VP; Shapere, AD; Strominger, A.; Wilczek, F., Compactification of the twisted heterotic string, Nucl. Phys., B 287, 402, (1987)
[51] Ginsparg, PH; Vafa, C., Toroidal compactification of nonsupersymmetric heterotic strings, Nucl. Phys., B 289, 414, (1987)
[52] Lüst, D., Compactification of the O(16) × O(16) heterotic string theory, Phys. Lett., B 178, 174, (1986)
[53] Fischler, W.; Susskind, L., Dilaton tadpoles, string condensates and scale invariance, Phys. Lett., B 171, 383, (1986)
[54] Fischler, W.; Susskind, L., Dilaton tadpoles, string condensates and scale invariance. 2, Phys. Lett., B 173, 262, (1986)
[55] Taylor, TR, Model building on asymmetric Z(3) orbifolds: nonsupersymmetric models, Nucl. Phys., B 303, 543, (1988)
[56] Toon, A., Nonsupersymmetric Z(4) orbifolds and Atkin-lehner symmetry, Phys. Lett., B 243, 68, (1990)
[57] Sasada, T., Asymmetric orbifold models of nonsupersymmetric heterotic strings, Prog. Theor. Phys., 95, 249, (1996)
[58] Font, A.; Hernandez, A., Nonsupersymmetric orbifolds, Nucl. Phys., B 634, 51, (2002)
[59] Gross, DJ; Harvey, JA; Martinec, EJ; Rohm, R., Heterotic string theory. 1. the free heterotic string, Nucl. Phys., B 256, 253, (1985)
[60] Gross, DJ; Harvey, JA; Martinec, EJ; Rohm, R., Heterotic string theory. 2. the interacting heterotic string, Nucl. Phys., B 267, 75, (1986)
[61] Rohm, R., Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys., B 237, 553, (1984)
[62] Ibáñez, LE; Mas, J.; Nilles, H-P; Quevedo, F., Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys., B 301, 157, (1988)
[63] A. Font, L.E. Ibáñez, H.P. Nilles and F. Quevedo, Degenerate orbifolds, Nucl. Phys.B 307 (1988) 109 [Erratum ibid.B 310 (1988) 764] [INSPIRE].
[64] Plöger, F.; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, PKS, Mirage torsion, JHEP, 04, 063, (2007)
[65] Casas, JA; Katehou, EK; Muñoz, C., U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys., B 317, 171, (1989)
[66] M.B. Green, J.H. Schwarz and E. Witten Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987).
[67] Groot Nibbelink, S.; Trapletti, M.; Walter, M., Resolutions of C\^{n}/Z_{n} orbifolds, their U(1) bundles, and applications to string model building, JHEP, 03, 035, (2007)
[68] Groot Nibbelink, S.; Ha, T-W; Trapletti, M., Toric resolutions of heterotic orbifolds, Phys. Rev., D 77, 026002, (2008)
[69] Donagi, R.; He, Y-H; Ovrut, BA; Reinbacher, R., The spectra of heterotic standard model vacua, JHEP, 06, 070, (2005)
[70] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
[71] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[72] S. Groot Nibbelink, Blowups of heterotic orbifolds using toric geometry, arXiv:0708.1875 [INSPIRE].
[73] Groot Nibbelink, S.; Klevers, D.; Ploger, F.; Trapletti, M.; Vaudrevange, PKS, Compact heterotic orbifolds in blow-up, JHEP, 04, 060, (2008)
[74] Lüst, D.; Reffert, S.; Scheidegger, E.; Stieberger, S., Resolved toroidal orbifolds and their orientifolds, Adv. Theor. Math. Phys., 12, 67, (2008)
[75] S. Reffert, The geometers toolkit to string compactifications, arXiv:0706.1310 [INSPIRE].
[76] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F., Gauged linear σ-models for toroidal orbifold resolutions, JHEP, 05, 053, (2012)
[77] Groot Nibbelink, S.; Nilles, HP; Trapletti, M., Multiple anomalous U(1)s in heterotic blow-ups, Phys. Lett., B 652, 124, (2007)
[78] Nilles, HP; Ramos-Sánchez, S.; Vaudrevange, PKS; Wingerter, A., The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun., 183, 1363, (2012)
[79] Fischer, M.; Ratz, M.; Torrado, J.; Vaudrevange, PKS, Classification of symmetric toroidal orbifolds, JHEP, 01, 084, (2013)
[80] Ramos-Sánchez, S., Towards low energy physics from the heterotic string, Fortsch. Phys., 10, 907, (2009)
[81] Dudas, E.; Mourad, J., Brane solutions in strings with broken supersymmetry and Dilaton tadpoles, Phys. Lett., B 486, 172, (2000)
[82] Dudas, E.; Mourad, J.; Timirgaziu, C., Time and space dependent backgrounds from nonsupersymmetric strings, Nucl. Phys., B 660, 3, (2003)
[83] Kachru, S.; Kumar, J.; Silverstein, E., Vacuum energy cancellation in a nonsupersymmetric string, Phys. Rev., D 59, 106004, (1999)
[84] G.W. Moore, Atkin-Lehner symmetry, Nucl. Phys.B 293 (1987) 139 [Erratum ibid.B 299 (1988) 847] [INSPIRE].
[85] Dienes, KR, Generalized Atkin-lehner symmetry, Phys. Rev., D 42, 2004, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.