zbMATH — the first resource for mathematics

Kinetic mixing of \(\operatorname{U}(1)\)s in heterotic orbifolds. (English) Zbl 1306.81236
Summary: We study kinetic mixing between massless \(\operatorname{U}(1)\) gauge symmetries in the bosonic formulation of heterotic orbifold compactifications. For non-prime \(\mathbb Z_{N}\) factorisable orbifolds, we find a simple expression of the mixing in terms of the properties of the \( \mathcal{N} = 2\) subsectors, which helps to understand under what conditions mixing can occur. With this tool, we analyze \(\mathbb Z_{6}\)-II heterotic orbifolds and find non-vanishing mixing even without including Wilson lines. We show that some semi-realistic models of the Mini-Landscape admit supersymmetric vacua with mixing between the hypercharge and an additional \(\operatorname{U}(1)\), which can be broken at low energies. We finally discuss some phenomenologically appealing possibilities that hidden photons in heterotic orbifolds allow.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
83E15 Kaluza-Klein and other higher-dimensional theories
57R18 Topology and geometry of orbifolds
Full Text: DOI arXiv
[1] Feldman, D.; Körs, B.; Nath, P., Extra-weakly interacting dark matter, Phys. Rev., D 75, 023503, (023503)
[2] Feldman, D.; Liu, Z.; Nath, P., The stückelberg Z-prime extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev., D 75, 115001, (2007)
[3] Pospelov, M.; Ritz, A.; Voloshin, MB, Secluded WIMP dark matter, Phys. Lett. B, 662, 53, (2008)
[4] Hooper, D.; Zurek, KM, A natural supersymmetric model with mev dark matter, Phys. Rev. D, 77, 087302, (2008)
[5] Arkani-Hamed, N.; Finkbeiner, DP; Slatyer, TR; Weiner, N., A theory of dark matter, Phys. Rev. D, 79, 015014, (2009)
[6] Pospelov, M.; Ritz, A., Astrophysical signatures of secluded dark matter, Phys. Lett. B, 671, 391, (2009)
[7] Arkani-Hamed, N.; Weiner, N., LHC signals for a superunified theory of dark matter, JHEP, 12, 104, (2008)
[8] Chun, EJ; Park, J-C, Dark matter and sub-gev hidden U(1) in GMSB models, JCAP, 02, 026, (2009)
[9] Cheung, C.; Ruderman, JT; Wang, L-T; Yavin, I., Kinetic mixing as the origin of light dark scales, Phys. Rev. D, 80, 035008, (2009)
[10] Katz, A.; Sundrum, R., Breaking the dark force, JHEP, 06, 003, (2009)
[11] Morrissey, DE; Poland, D.; Zurek, KM, Abelian hidden sectors at a gev, JHEP, 07, 050, (2009)
[12] Cohen, T.; Phalen, DJ; Pierce, A.; Zurek, KM, Asymmetric dark matter from a gev hidden sector, Phys. Rev. D, 82, 056001, (2010)
[13] S. Andreas, M. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, arXiv:1109.2869 [INSPIRE].
[14] Pospelov, M., Secluded U(1) below the weak scale, Phys. Rev, D 80, 095002, (2009)
[15] Essig, R.; Schuster, P.; Toro, N., Probing dark forces and light hidden sectors at low-energy e\^{+}e\^{−} colliders, Phys. Rev. D, 80, 015003, (2009)
[16] Bjorken, JD; Essig, R.; Schuster, P.; Toro, N., New fixed-target experiments to search for dark gauge forces, Phys. Rev. D, 80, 075018, (2009)
[17] Jaeckel, J.; Ringwald, A., The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci., 60, 405, (2010)
[18] Redondo, J.; Ringwald, A., Light shining through walls, Contemp. Phys., 52, 211, (2011)
[19] S. Andreas, Dark forces and dark matter in a hidden sector, arXiv:1110.2636 [INSPIRE].
[20] Abel, S.; Schofield, B., Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B, 685, 150, (2004)
[21] Lüst, D.; Stieberger, S., Gauge threshold corrections in intersecting brane world models, Fortsch. Phys., 55, 427, (2007)
[22] Abel, SA; Jaeckel, J.; Khoze, VV; Ringwald, A., Illuminating the hidden sector of string theory by shining light through a magnetic field, Phys. Lett., B 666, 66, (2008)
[23] Abel, S.; Goodsell, M.; Jaeckel, J.; Khoze, V.; Ringwald, A., Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP, 07, 124, (2008)
[24] Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A., Naturally light hidden photons in large volume string compactifications, JHEP, 11, 027, (2009)
[25] Gmeiner, F.; Honecker, G., Complete gauge threshold corrections for intersecting fractional D6-branes: the Z_{6} and Z\^{6} standard models, Nucl. Phys. B, 829, 225, (2010)
[26] M. Goodsell, Light hidden U(1)s from string theory, arXiv:0912.4206 [INSPIRE].
[27] Bullimore, M.; Conlon, JP; Witkowski, LT, Kinetic mixing of U(1)s for local string models, JHEP, 11, 142, (2010)
[28] Cicoli, M.; Goodsell, M.; Jaeckel, J.; Ringwald, A., Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP, 07, 114, (2011)
[29] G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifolds - The complete perturbative story, arXiv:1109.3192 [INSPIRE].
[30] Dienes, KR; Kolda, CF; March-Russell, J., Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys., B 492, 104, (1997)
[31] Goodsell, M.; Ringwald, A., Light hidden-sector U(1)s in string compactifications, Fortsch. Phys., 58, 716, (2010)
[32] Lukas, A.; Stelle, K., Heterotic anomaly cancellation in five-dimensions, JHEP, 01, 010, (2000)
[33] Blumenhagen, R.; Honecker, G.; Weigand, T., Loop-corrected compactifications of the heterotic string with line bundles, JHEP, 06, 020, (2005)
[34] Lebedev, O.; Nilles, HP; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B, 645, 88, (2007)
[35] Lebedev, O.; Nilles, HP; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, PK, Heterotic mini-landscape. (II). completing the search for MSSM vacua in a Z_{6} orbifold, Phys. Lett., B 668, 331, (2008)
[36] Nilles, HP; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, PK, From strings to the MSSM, Eur. Phys. J. C, 59, 249, (2009)
[37] Kaplunovsky, V.; Louis, J., Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B, 422, 57, (1994)
[38] Benakli, K.; Goodsell, M., Dirac gauginos and kinetic mixing, Nucl. Phys. B, 830, 315, (2010)
[39] Lee, HM, Gauge coupling unification in six dimensions, Phys. Rev., D 75, 065009, (2007)
[40] Kaplunovsky, V.; Louis, J., On gauge couplings in string theory, Nucl. Phys., B 444, 191, (1995)
[41] Bailin, D.; Love, A., Orbifold compactifications of string theory, Phys. Rept., 315, 285, (1999)
[42] K.S. Choi and J.E. Kim, Lecture notes on physics 696, Springer, Berlin Germany (2006).
[43] Ramos-Sanchez, S., Towards low energy physics from the heterotic string, Fortsch. Phys., 10, 907, (2009)
[44] P.K. Vaudrevange, Grand unification in the heterotic brane world, arXiv:0812.3503 [INSPIRE].
[45] Kobayashi, T.; Ohtsubo, N., Geometrical aspects of Z_{N} orbifold phenomenology, Int. J. Mod. Phys., A 9, 87, (1994)
[46] Casas, J.; Katehou, E.; Muñoz, C., U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys., B 317, 171, (1989)
[47] Kobayashi, T.; Nakano, H., ’anomalous’ U(1) symmetry in orbifold string models, Nucl. Phys. B, 496, 103, (1997)
[48] Witten, E., Some properties of O(32) superstrings, Phys. Lett., B 149, 351, (1984)
[49] Green, MB; Schwarz, JH, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett., B 149, 117, (1984)
[50] Dine, M.; Seiberg, N.; Witten, E., Fayet-Iliopoulos terms in string theory, Nucl. Phys., B 289, 589, (1987)
[51] Senda, I.; Sugamoto, A., Orbifold models and modular transformation, Nucl. Phys., B 302, 291, (1988)
[52] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds. 2, Nucl. Phys., B 274, 285, (1986)
[53] Vafa, C., Modular invariance and discrete torsion on orbifolds, Nucl. Phys., B 273, 592, (1986)
[54] Ploger, F.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, PK, Mirage torsion, JHEP, 04, 063, (2007)
[55] Dixon, LJ; Kaplunovsky, V.; Louis, J., Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys., B 355, 649, (1991)
[56] Lebedev, O.; Nilles, HP; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; etal., The heterotic road to the MSSM with R parity, Phys. Rev., D 77, 046013, (2008)
[57] Brummer, F.; Kappl, R.; Ratz, M.; Schmidt-Hoberg, K., Approximate r-symmetries and the μ term, JHEP, 04, 006, (2010)
[58] Lebedev, O.; Ramos-Sanchez, S., The NMSSM and string theory, Phys. Lett., B 684, 48, (2010)
[59] Spalinski, M., On the discrete symmetry group of Narian orbifolds, Phys. Lett., B 275, 47, (1992)
[60] Erler, J.; Jungnickel, D.; Nilles, HP, Space duality and quantized Wilson lines, Phys. Lett., B 276, 303, (1992)
[61] Bailin, D.; Love, A.; Sabra, W.; Thomas, S., Modular symmetries in Z_{n} orbifold compactified string theories with Wilson lines, Mod. Phys. Lett. A, 9, 1229, (1994)
[62] Parameswaran, SL; Ramos-Sanchez, S.; Zavala, I., On moduli stabilisation and de Sitter vacua in MSSM heterotic orbifolds, JHEP, 01, 071, (2011)
[63] Brummer, F.; Buchmüller, W., Light higgsinos as heralds of higher-dimensional unification, JHEP, 07, 010, (2011)
[64] Ibarra, A.; Ringwald, A.; Weniger, C., Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP, 01, 003, (2009)
[65] Arvanitaki, A.; Craig, N.; Dimopoulos, S.; Dubovsky, S.; March-Russell, J., String photini at the LHC, Phys. Rev. D, 81, 075018, (2010)
[66] Davidson, S.; Hannestad, S.; Raffelt, G., Updated bounds on millicharged particles, JHEP, 05, 003, (2000)
[67] Ackerman, L.; Buckley, MR; Carroll, SM; Kamionkowski, M., Dark matter and dark radiation, Phys. Rev. D, 79, 023519, (2009)
[68] Intriligator, KA; Seiberg, N., Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl., 45BC, 1, (1996)
[69] J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z_{12}orbifold, hep-th/0608085 [INSPIRE].
[70] Blaszczyk, M.; Nibbelink Groot, S.; Ratz, M.; Ruehle, F.; Trapletti, M.; etal., A Z_{2} × Z_{2} standard model, Phys. Lett. B, 683, 340, (2010)
[71] O. Lebedev et al., Orbifold tables, http://www.th.physik.uni-bonn.de/nilles/orbifolds/ (2006).
[72] H.P. Nilles, S. Ramos-Sanchez, P.K. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, arXiv:1110.5229 [INSPIRE].
[73] P. Nilles, S. Ramos-Sánchez, P.K. Vaudrevange and A. Wingerter The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, http://projects.hepforge.org/orbifolder/ (2011).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.