×

zbMATH — the first resource for mathematics

Heterotic non-abelian orbifolds. (English) Zbl 1342.81423

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Software:
GAP; Orbifolder
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds, Nucl. Phys., B 261, 678, (1985)
[2] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds. 2, Nucl. Phys., B 274, 285, (1986)
[3] Faraggi, AE, A new standard-like model in the four-dimensional free fermionic string formulation, Phys. Lett., B 278, 131, (1992)
[4] Dijkstra, T.; Huiszoon, L.; Schellekens, A., Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys., B 710, 3, (2005) · Zbl 1115.81378
[5] Gmeiner, F.; Blumenhagen, R.; Honecker, G.; Lüst, D.; Weigand, T., One in a billion: MSSM-like D-brane statistics, JHEP, 01, 004, (2006)
[6] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept., 445, 1, (2007)
[7] Gmeiner, F.; Honecker, G., Millions of standard models on \( Z_6^{′ } \)?, JHEP, 07, 052, (2008)
[8] Acharya, BS; Bobkov, K.; Kane, GL; Shao, J.; Kumar, P., The G_{2}-MSSM: an M-theory motivated model of particle physics, Phys. Rev., D 78, 065038, (2008)
[9] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett., B 633, 783, (2006) · Zbl 1247.81348
[10] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev., D 84, 106005, (2011)
[11] Blaszczyk, M.; Nibbelink Groot, S.; Ruehle, F.; Trapletti, M.; Vaudrevange, PK, Heterotic MSSM on a resolved orbifold, JHEP, 09, 065, (2010) · Zbl 1291.81296
[12] Blaszczyk, M.; Cabo Bizet, NG; Nilles, HP; Ruhle, F., A perfect match of MSSM-like orbifold and resolution models via anomalies, JHEP, 10, 117, (2011) · Zbl 1303.81147
[13] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F., Gauged linear σ-models for toroidal orbifold resolutions, JHEP, 05, 053, (2012) · Zbl 1348.81294
[14] Buchmüller, W.; Louis, J.; Schmidt, J.; Valandro, R., Voisin-borcea manifolds and heterotic orbifold models, JHEP, 10, 114, (2012)
[15] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. Rev. Lett., 96, 121602, (2006)
[16] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string (II), Nucl. Phys., B 785, 149, (2007) · Zbl 1149.81344
[17] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007) · Zbl 1256.81094
[18] Lebedev, O.; Nilles, HP; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, PK, Heterotic mini-landscape. (II). completing the search for MSSM vacua in a Z_{6} orbifold, Phys. Lett., B 668, 331, (2008)
[19] Lebedev, O.; Ramos-Sanchez, S., The NMSSM and string theory, Phys. Lett., B 684, 48, (2010)
[20] Antoniadis, I.; Gava, E.; Narain, K.; Taylor, T., Effective μ term in superstring theory, Nucl. Phys., B 432, 187, (1994) · Zbl 1020.81756
[21] Kappl, R.; etal., Large hierarchies from approximate R symmetries, Phys. Rev. Lett., 102, 121602, (2009)
[22] Kobayashi, T.; Nilles, HP; Plöger, F.; Raby, S.; Ratz, M., Stringy origin of non-abelian discrete flavor symmetries, Nucl. Phys., B 768, 135, (2007) · Zbl 1117.81354
[23] Lee, HM; etal., A unique \( Z_4^R \) symmetry for the MSSM, Phys. Lett., B 694, 491, (2011)
[24] Förste, S.; Nilles, HP; Ramos-Sánchez, S.; Vaudrevange, PK, Proton hexality in local grand unification, Phys. Lett., B 693, 386, (2010)
[25] Kobayashi, T.; Ohtsubo, N., Geometrical aspects of Z_{N} orbifold phenomenology, Int. J. Mod. Phys., A 9, 87, (1994) · Zbl 0985.81631
[26] Bailin, D.; Love, A., Orbifold compactifications of string theory, Phys. Rept., 315, 285, (1999)
[27] Blumenhagen, R.; Plauschinn, E., Intersecting D-branes on shift Z_{2} × Z_{2} orientifolds, JHEP, 08, 031, (2006)
[28] Donagi, R.; Wendland, K., On orbifolds and free fermion constructions, J. Geom. Phys., 59, 942, (2009) · Zbl 1166.81033
[29] Donagi, R.; Faraggi, AE, On the number of chiral generations in Z_{2} × Z_{2} orbifolds, Nucl. Phys., B 694, 187, (2004) · Zbl 1130.81352
[30] Förste, S.; Kobayashi, T.; Ohki, H.; Takahashi, K-j, Non-factorisable Z_{2} × Z_{2} heterotic orbifold models and Yukawa couplings, JHEP, 03, 011, (2007)
[31] F. Beye, T. Kobayashi and S. Kuwakino, Gauge symmetries in heterotic asymmetric orbifolds, arXiv:1304.5621 [INSPIRE]. · Zbl 1331.81186
[32] Fischer, M.; Ratz, M.; Torrado, J.; Vaudrevange, PK, Classification of symmetric toroidal orbifolds, JHEP, 01, 084, (2013) · Zbl 1342.81360
[33] Kakushadze, Z.; Shiu, G.; Tye, SH, Asymmetric non-abelian orbifolds and model building, Phys. Rev., D 54, 7545, (1996)
[34] S.J. Konopka, Non abelian orbifold compactifications of the heterotic string, arXiv:1210.5040 [INSPIRE]. · Zbl 1342.81445
[35] G. Ross, Wilson line breaking and gauge coupling unification, hep-ph/0411057 [INSPIRE].
[36] Hebecker, A.; Trapletti, M., Gauge unification in highly anisotropic string compactifications, Nucl. Phys., B 713, 173, (2005) · Zbl 1176.81102
[37] Anandakrishnan, A.; Raby, S., SU(6) GUT breaking on a projective plane, Nucl. Phys., B 868, 627, (2013) · Zbl 1262.81220
[38] Kobayashi, T.; Raby, S.; Zhang, R-J, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z_{6} orbifold, Nucl. Phys., B 704, 3, (2005) · Zbl 1198.81158
[39] Kim, JE; Kim, J-H; Kyae, B., Superstring standard model from Z_{12−I} orbifold compactification with and without exotics and effective R-parity, JHEP, 06, 034, (2007)
[40] Blaszczyk, M.; etal., A Z_{2} × Z_{2} standard model, Phys. Lett., B 683, 340, (2010)
[41] Pena, DKM; Nilles, HP; Oehlmann, P-K, A zip-code for quarks, leptons and Higgs bosons, JHEP, 12, 024, (2012)
[42] Ibáñez, LE; Mas, J.; Nilles, H-P; Quevedo, F., Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys., B 301, 157, (1988)
[43] Casas, J.; Macorra, A.; Mondragón, M.; Muñoz, C., Z_{7} phenomenology, Phys. Lett., B 247, 50, (1990)
[44] H. Brown et al., Crystallographic groups of four-dimensional space, J. Wiley & Sons, U.S.A. (1978).
[45] J. Opgenorth, W. Plesken, and T. Schulz, Cristallographic algorithms and tables, Acta Cryst. Sect.A 54 (1998). · Zbl 1176.20051
[46] The GAP Group, GAPGroups, Algorithms, and Programming, version 4.6.3, (2013).
[47] Ellis, JR; Lahanas, A.; Nanopoulos, DV; Tamvakis, K., No-scale supersymmetric standard model, Phys. Lett., B 134, 429, (1984)
[48] Cvetič, M.; Louis, J.; Ovrut, BA, A string calculation of the Kähler potentials for moduli of Z_{N} orbifolds, Phys. Lett., B 206, 227, (1988)
[49] A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, hep-ph/9707209 [INSPIRE].
[50] Covi, L.; etal., De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP, 06, 057, (2008)
[51] Ibáñez, LE; Lüst, D., Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings, Nucl. Phys., B 382, 305, (1992)
[52] Dine, M.; Seiberg, N.; Wen, X.; Witten, E., Nonperturbative effects on the string world sheet, Nucl. Phys., B 278, 769, (1986)
[53] Dixon, LJ; Kaplunovsky, V.; Louis, J., On effective field theories describing (2, 2) vacua of the heterotic string, Nucl. Phys., B 329, 27, (1990)
[54] Groot Nibbelink, S.; Vaudrevange, PKS, Schoen manifold with line bundles as resolved magnetized orbifolds, JHEP, 03, 142, (2013) · Zbl 1342.81462
[55] Nilles, HP; Ramos-Sanchez, S.; Vaudrevange, PKS; Wingerter, A., The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun., 183, 1363, (2012)
[56] Ibáñez, LE; Nilles, HP; Quevedo, F., Orbifolds and Wilson lines, Phys. Lett., B 187, 25, (1987)
[57] R. Brown and P.J. Higgins, The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action, math/0212271.
[58] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and a new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[59] Braun, V., On free quotients of complete intersection Calabi-Yau manifolds, JHEP, 04, 005, (2011) · Zbl 1250.14026
[60] Witten, E., Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys., B 471, 135, (1996) · Zbl 1003.81536
[61] Abe, H.; Choi, K-S; Kobayashi, T.; Ohki, H., Magnetic flux, Wilson line and orbifold, Phys. Rev., D 80, 126006, (2009)
[62] Kashani-Poor, A-K; Minasian, R.; Triendl, H., Enhanced supersymmetry from vanishing Euler number, JHEP, 04, 058, (2013) · Zbl 1342.81595
[63] Ishimori, H.; etal., An introduction to non-abelian discrete symmetries for particle physicists, Lect. Notes Phys., 858, 1, (2012)
[64] Luhn, C.; Nasri, S.; Ramond, P., Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z_{7} and Z_{3}, Phys. Lett., B 652, 27, (2007)
[65] Luhn, C.; Parattu, KM; Wingerter, A., A minimal model of neutrino flavor, JHEP, 12, 096, (2012)
[66] Blumenhagen, R.; Görlich, L.; Körs, B., Supersymmetric 4D orientifolds of type IIA with D6-branes at angles, JHEP, 01, 040, (2000) · Zbl 0990.81589
[67] Förste, S.; Honecker, G.; Schreyer, R., Supersymmetric Z_{N} × Z_{M} orientifolds in 4D with D-branes at angles, Nucl. Phys., B 593, 127, (2001) · Zbl 0971.81539
[68] Erler, J., Anomaly cancellation in six-dimensions, J. Math. Phys., 35, 1819, (1994) · Zbl 0803.58060
[69] Honecker, G.; Trapletti, M., Merging heterotic orbifolds and K3 compactifications with line bundles, JHEP, 01, 051, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.