×

zbMATH — the first resource for mathematics

A note on the predictions of models with modular flavor symmetries. (English) Zbl 1435.81117
Summary: Models with modular flavor symmetries have been thought to be highly predictive. We point out that these predictions are subject to corrections from non-holomorphic terms in the Lagrangean. Specifically, in the models discussed in the literature, the Kähler potential is not fixed by the symmetries, for instance. The most general Kähler potential consistent with the symmetries of the model contains additional terms with additional parameters, which reduce the predictive power of these constructions. We also comment on potential ways of how one may conceivably retain the predictivity.
MSC:
81T10 Model quantum field theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Feruglio, F., Are neutrino masses modular forms?, (Levy, A.; Forte, S.; Ridolfi, G., Guido Altarelli’s Legacy (2019)), 227-266
[2] Criado, J. C.; Feruglio, F., SciPost Phys., 5, 5, Article 042 pp. (2018)
[3] Kobayashi, T.; Omoto, N.; Shimizu, Y.; Takagi, K.; Tanimoto, M.; Tatsuishi, T. H., J. High Energy Phys., 11, Article 196 pp. (2018)
[4] Novichkov, P. P.; Penedo, J. T.; Petcov, S. T.; Titov, A. V., J. High Energy Phys., 04, Article 005 pp. (2019)
[5] Kobayashi, T.; Tamba, S., Phys. Rev. D, 99, 4, Article 046001 pp. (2019)
[6] de Anda, F. J.; King, S. F.; Perdomo, E.
[7] Kobayashi, T.; Shimizu, Y.; Takagi, K.; Tanimoto, M.; Tatsuishi, T. H.; Uchida, H., Phys. Lett. B, 794, 114 (2019)
[8] Ding, G.-J.; King, S. F.; Liu, X.-G.
[9] Kobayashi, T.; Shimizu, Y.; Takagi, K.; Tanimoto, M.; Tatsuishi, T. H.
[10] Chen, M.-C.; Fallbacher, M.; Ratz, M.; Staudt, C., Phys. Lett. B, 718, 516 (2012)
[11] Chen, M.-C.; Fallbacher, M.; Omura, Y.; Ratz, M.; Staudt, C., Nucl. Phys. B, 873, 343 (2013)
[12] Ferrara, S.; Lüst, D.; Theisen, S., Phys. Lett. B, 233, 147 (1989)
[13] Baur, A.; Nilles, H. P.; Trautner, A.; Vaudrevange, P. K.S., Phys. Lett. B, 795, 7 (2019)
[14] Baur, A.; Nilles, H. P.; Trautner, A.; Vaudrevange, P. K.S.
[15] Kobayashi, T.; Nilles, H. P.; Plöger, F.; Raby, S.; Ratz, M., Nucl. Phys. B, 768, 135 (2007)
[16] Ibáñez, L. E.; Lüst, D., Nucl. Phys. B, 382, 305 (1992)
[17] Conlon, J. P.; Cremades, D.; Quevedo, F., J. High Energy Phys., 01, Article 022 pp. (2007)
[18] Kaplunovsky, V.; Louis, J., Nucl. Phys. B, 444, 191 (1995)
[19] Antoniadis, I.; Gava, E.; Narain, K. S.; Taylor, T. R., Nucl. Phys. B, 432, 187 (1994)
[20] Cremades, D.; Ibáñez, L. E.; Marchesano, F., J. High Energy Phys., 05, Article 079 pp. (2004)
[21] Cremades, D.; Ibáñez, L. E.; Marchesano, F., J. High Energy Phys., 07, Article 038 pp. (2003)
[22] Abel, S. A.; Owen, A. W., Nucl. Phys. B, 682, 183 (2004)
[23] Wess, J.; Bagger, J., Supersymmetry and Supergravity (1992), Princeton University Press: Princeton University Press Princeton, NJ, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.