×

zbMATH — the first resource for mathematics

Some semirational solutions and their interactions on the zero-intensity background for the coupled nonlinear Schrödinger equations. (English) Zbl 07263894
Summary: In this paper, we present two types of the semirational solutions for the coupled nonlinear Schrödinger equations through employing the generalized Darboux transformation. Based on those semirational solutions, some nonlinear wave interactions on the zero-intensity background are investigated. For example, we find that (i) two degenerate solitons with the same amplitudes draw close to each other first, then interact and finally apart from each other, while in the general two-soliton interaction, two solitons with the same amplitudes will periodically attract and repel, and form a bound state, (ii) the elastic and inelastic interactions occur between one regular soliton and degenerate solitons, (iii) some novel bound states arise due to the existence of the degenerate solitons.
MSC:
00 General and overarching topics; collections
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hasegawa, A.; Tappert, F., Appl Phys Lett, 23, 142 (1973)
[2] Hasegawa, A.; Tappert, F., Appl Phys Lett, 23, 171 (1973)
[3] Mollenauer, L. F.; Stolen, R. H.; Gordon, J. P., Phys Rev Lett, 45, 1095 (1980)
[4] Emplit, P.; Hamaide, J. P.; Reynaud, F.; Froehly, C.; Barthelemy, A., Opt Commun, 62, 374 (1987)
[5] Abdullaev, F.; Darmanyan, S.; Khabibullaev, P., Optical solitons (1993), Springer: Springer Berlin
[6] Hasegawa, A.; Kodama, Y., Solitons in optical communications (1995), Oxford University: Oxford University Oxford
[7] Agrawal, G. P., Nonlinear fiber optics (2002), Academic: Academic San Diego
[8] Suryanto, A.; van Groesen, E., Opt Commun, 258, 264 (2006)
[9] Stegeman, G. I.; Segev, M., Science, 286, 1518 (1999)
[10] Gordon, J. P., Opt Lett, 8, 596 (1983)
[11] Chabchoub, A.; Kibler, B.; Dudley, J. M.; Akhmediev, N., Philos Trans R Soc London A, 372, 20140005 (2014)
[12] Akhmediev, N.; Ankiewicz, A.; Taki, M., Phys Lett A, 373, 675 (2009)
[13] Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Phys Rev E, 85, 066601 (2012)
[14] Shrira, V. I.; Geogjaev, V. V., J Eng Math, 67, 11 (2010)
[15] Dudley, J. M.; Dias, F.; Erkintalo, M.; Genty, G., Nat Photonics, 8, 755 (2014)
[16] Wang, L.; Zhang, J. H.; Liu, C.; Li, M.; Qi, F. H., Phys Rev E, 93, 062217 (2016)
[17] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Genty, G.; Wetzel, B.; Akhmediev, N.; Dias, F.; Dudley, J. M., Sci Rep, 2, 463 (2012)
[18] Kharif, C.; Pelinovsky, E.; Slunyaev, A., Rogue waves in the ocean: observation, Theories and modeling (2009), Springer: Springer New York
[19] Erkintalo, M.; Genty, G.; Dudley, J. M., Opt Lett, 34, 2468 (2009)
[20] Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B., Nature, 450, 1054 (2007)
[21] Scott, A. C., Phys Scr, 29, 279 (1984)
[22] Radhakrishnan, R.; Lakshmanan, M.; Hietarinta, J., Phys Rev E, 56, 2213 (1997)
[23] Radhakrishnan, R.; Dinda, P. T.; Millot, G., Phys Rev E, 69, 046607 (2004)
[24] Radhakrishnan, R.; Lakshmanan, M., J Phys A, 28, 2683 (1995)
[25] Sheppard, A. P.; Kivshar, Y. S., Phys Rev E, 55, 4773 (1997)
[26] Jiang, Y.; Tian, B.; Liu, W. J.; Sun, K.; Li, M.; Wang, P., Phys Rev E, 85, 036605 (2012)
[27] Sun, Z. Y.; Gao, Y. T.; Yu, X.; Liu, W. J.; Liu, Y., Phys Rev E, 80, 066608 (2009)
[28] Matveev, V. B.; Salle, M. A., Darboux transformation and solitons (1991), Springer-Verlag: Springer-Verlag Berlin
[29] Matveev, V. B., Phys Lett A, 166, 205 (1992)
[30] Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J. M., Phys Rev E, 80, 026601 (2009)
[31] Wang, L.; Zhang, J. H.; Wang, Z. Q.; Liu, C.; Li, M.; Qi, F. H.; Guo, R., Phys Rev E, 93, 012214 (2016)
[32] Guo, B. L.; Ling, L. M., Chin Phys Lett, 28, 110202 (2011)
[33] Priya, N. V.; Senthilvelan, M.; Lakshmanan, M., Phys Rev E, 88, 022918 (2013)
[34] Zhai, B. G.; Zhang, W. G.; Wang, X. L.; Zhang, H. Q., Nonlinear Anal Real World Appl, 14, 14 (2013)
[35] Mu, G.; Qin, Z. Y.; Grimshaw, R., SIAM J Appl Math, 85, 1 (2015)
[36] Guo, B. L.; Ling, L. M.; Liu, Q. P., Phys Rev E, 85, 026607 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.