zbMATH — the first resource for mathematics

Resonant multiple wave solutions to a new \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation: linear superposition principle. (English) Zbl 1383.35193
Summary: Linear superposition principle is applied to the Hirota bilinear form of a new \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation, which leads to a sufficient and necessary criterion for the existence of linear subspaces of exponential traveling wave solutions. As a result, resonant multiple wave solutions are derived and plotted for the new \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation.

35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI
[1] Miura, R. M., Lecture Notes in Mathematics, (1976), Springer Berlin
[2] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, (1991), Cambridge Univ. Press Cambridge · Zbl 0762.35001
[3] Lü, X.; Chen, S. T.; Ma, W. X.; Lü, X.; Ma, W. X.; Gao, L. N.; Zhao, X. Y.; Zi, Y. Y.; Yu, J.; Lü, X.; Lü, X.; Ma, W. X.; Zhou, Y.; Khalique, C. M., Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation, Nonlinear Dynam., Nonlinear Dynam., Comput. Math. Appl., Comput. Math. Appl., 71, 1560, (2016)
[4] Lü, X.; Ma, W. X.; Chen, S. T.; Khalique, C. M.; Lü, X.; Lin, F. H., Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order, Appl. Math. Lett., Commun. Nonlinear Sci. Numer. Simul., 32, 241, (2016)
[5] Lü, X.; Ma, W. X.; Yu, J.; Khalique, C. M., Solitary waves with the madelung fluid description: A generalized derivative nonlinear schrodinger equation, Commun. Nonlinear Sci. Numer. Simul., 31, 40, (2016)
[6] Hirota, R., The Direct Method in Soliton Theory, (2004), Cambridge Univ. Press Cambridge
[7] Ma, W. X.; Fan, E. G., Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61, 950, (2011) · Zbl 1217.35164
[8] Ma, W. X.; Zhang, Y.; Tang, Y. N.; Tu, J. Y., Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218, 7174, (2012) · Zbl 1245.35109
[9] Michelle, S.; Alshaery, A. A.; Hilal, E. M.; Bhrawy, A. H.; Zhou, Q.; Biswas, A., Optical solitons in DWDM system with four-wave mixing, Optoelectron. Adv. Mater., 9, 14, (2015)
[10] Dai, C. Q.; Xu, Y. J.; Dai, C. Q.; Wang, Y. Y.; Zhang, X. F., Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media, Appl. Math. Model., Nonlinear Dynam., 83, 2453, (2016)
[11] Wang, D. S.; Ma, Y. Q.; Li, X. G.; Wang, D. S.; Wei, X., Integrability and exact solutions of a two-component Korteweg-de Vries system, Commun. Nonlinear Sci. Numer. Simul., Appl. Math. Lett., 51, 60, (2016)
[12] Wazwaz, A. M.; El-Tantawy, S. A., A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dynam., 84, 1107, (2016)
[13] Wang, Y. Y.; Zhang, Y. P.; Dai, C. Q.; Zhang, B.; Zhang, X. L.; Dai, C. Q.; Chen, R. P.; Dai, C. Q., Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation, Nonlinear Dynam., Nonlinear Dynam., Nonlinear Dynam., 88, 2807, (2017)
[14] Wang, D. S.; Yin, S. J.; Tian, Y.; Liu, Y.; Wang, D. S.; Yin, Y. B.; Wang, D. S.; Shi, Y. R.; Feng, W. X.; Wen, L., Dynamical and energetic instabilities of F=2 spinor Bose-Einstein condensates in an optical lattice, Appl. Math. Comput., Comput. Math. Appl., Physica D, 351-352, 30, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.