×

zbMATH — the first resource for mathematics

Lump-type and interaction solutions to an extended \((3+1)\)-dimensional Jimbo-Miwa equation. (English) Zbl 1434.35169

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ma, W. X., Phys. Lett. A379, 1975 (2015).
[2] Ma, W. X. and Zhou, Y., J. Differ. Equ.264, 2633 (2018).
[3] Xu, T.et al., Physica D390, 47 (2019).
[4] Li, M., Shui, J. J. and Xu, T., Appl. Math. Lett.83, 110 (2018).
[5] Zhang, H. Q. and Gao, M., Commun. Nonlinear Sci. Numer. Simul.63, 253 (2018).
[6] Zhang, H. Q., Pei, Z. J. and Ma, W. X., Chaos Solitons Fractals123, 429 (2019).
[7] Li, M., Xu, T. and Meng, D. X., J. Phys. Soc. Jpn.85, 124001 (2016).
[8] Guo, R., Hao, H. Q. and Zhang, L. L., Nonlinear Dyn.74, 701 (2013).
[9] Yang, Z. J.et al., Appl. Math. Lett.82, 64 (2018).
[10] Zhang, H. Q., Hu, R. and Zhang, M. Y., Appl. Math. Lett.69, 101 (2017).
[11] Zhao, X. J., Guo, R. and Hao, H. Q., Appl. Math. Lett.75, 114 (2018).
[12] Li, M. and Xu, T., Phys. Rev. E91, 033202 (2015).
[13] Zhang, H. Q. and Chen, F., Appl. Math. Lett.88, 237 (2019).
[14] Xu, T.et al., Chaos29, 123124 (2019).
[15] Xu, T. and Pelinovsky, D. E., Phys. Lett. A383, 125948 (2019).
[16] Zhang, H. Q., Zhang, M. Y. and Hu, R., Appl. Math. Lett.76, 170 (2018).
[17] Zhang, H. Q., Wang, Y. and Ma, W. X., Chaos27, 073102 (2017).
[18] Jimbo, M. and Miwa, T., Publ. Res. Inst. Math. Sci.19, 943 (1983).
[19] Wazwaz, A. M., Appl. Math. Lett.64, 21 (2017).
[20] Yang, J. Y. and Ma, W. X., Comput. Math. Appl.73, 220 (2017).
[21] Ma, W. X., Int. J. Nonlinear Sci. Numer. Simul.17, 355 (2016).
[22] Tan, W.et al., Z. Naturforsch. A73, 43 (2017).
[23] Ma, W. X., Chaos Solitons Fractals42, 1356 (2009).
[24] Tang, Y. N.et al., Appl. Math. Comput.217, 21 (2011).
[25] Tang, Y., Appl. Math. Model.37, 10 (2013).
[26] Msingh, R. K., Commun. Nonlinear Sci. Numer. Simul.37, 362 (2016).
[27] Dai, Z. D.et al., Phys. Lett. A372, 5984 (2008).
[28] Batwa, S. and Ma, W. X., Comput. Math. Appl.76, 1576 (2018).
[29] Ma, W. X., Qin, Z. Y. and Lü, X., Nonlinear Dyn.84, 923 (2016).
[30] Yang, J. Y. and Ma, W. X., Int. J. Mod. Phys. B30, 1640028 (2016).
[31] Yong, X. L., Li, X. J. and Huang, Y. H., Appl. Math. Lett.86, 222 (2018).
[32] Ali, K. K., Nuruddeen, R. I. and Hadhoud, A. R., Results Phys.9, 12 (2018).
[33] Kaur, L. and Wazwaz, A. M., Math. Method Appl. Sci.41, 17 (2018).
[34] Li, H. and Li, Y. Z., Appl. Math. Comput.333, 369 (2018).
[35] Kuo, C. K. and Ghanbari, B., Nonlinear Dyn.1, 6 (2019).
[36] Manafian, J., Comput. Math. Appl.76, 1246 (2018).
[37] Sun, H. Q. and Chen, A. H., Appl. Math. Lett.68, 55 (2017).
[38] Yue, Y. F., Huang, L. L. and Chen, Y., Appl. Math. Lett.89, 70 (2019).
[39] Lü, X. and Ma, W. X., Nonlinear Dyn.85, 1217 (2016).
[40] Liu, J. G., Appl. Math. Lett.86, 36 (2018).
[41] Lü, X., Chen, S. T. and Ma, W. X., Nonlinear Dyn.86, 523 (2016).
[42] Zhang, H. Q. and Ma, W. X., Nonlinear Dyn.87, 2305 (2016).
[43] Ma, W. X., Yong, X. L. and Zhang, H. Q., Comput. Math. Appl.75, 289 (2018).
[44] Chen, S. T. and Ma, W. X., Front. Math. China13, 525 (2018).
[45] Ma, W. X., Li, J. and Khalique, C. M., Complexity2018, 9059858 (2018).
[46] Lü, X. and Ma, W. X., Appl. Math. Lett.50, 37 (2015).
[47] Lü, X.et al., Commun. Nonlinear Sci. Numer. Simul.31, 40 (2016).
[48] Ma, W. X., J. Geom. Phys.133, 10 (2018).
[49] Ma, W. X., East Asian J. Appl. Math.9, 185 (2019).
[50] Ma, W. X., Acta Math. Sci. B39, 498 (2019).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.