zbMATH — the first resource for mathematics

Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. (English) Zbl 07171830
Summary: In the fiber communication domain, people are facing the challenges due to the rapidly growing requirement on the capacity from new functions and services. Multi-hump solitons are therefore noticed and studied on the feasibility of improving the capacity of the optical fiber communication. In this paper, we study the vector bright solitons and their interaction properties of the coupled Fokas-Lenells system, which models the femtosecond optical pulses in a birefringent optical fiber. We derive the so-called degenerate and nondegenerate vector solitons associated with the one and two eigenvalues, respectively, and the latter admits the symmetric profile. Asymptotically and graphically, interaction patterns of such solitons are classified as follows: Interactions between the degenerate solitons can be elastic or inelastic, reflecting the intensity redistribution between the two components; Interactions between the degenerate and nondegenerate solitons are inelastic, which make the nondegenerate solitons maintaining or losing the profiles in the different situations; Interactions between the nondegenerate solitons do not cause the intensity redistribution, while their shapes change slightly or remain unchanged.

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
35B40 Asymptotic behavior of solutions to PDEs
78A60 Lasers, masers, optical bistability, nonlinear optics
35Q51 Soliton equations
Full Text: DOI
[1] Agrawal, Gp, Fiber-Optic Communication Systems (2010), Hoboken: Wiley, Hoboken
[2] Cvijetic, M.; Djordjevic, Ib, Advanced Optical Communication Systems and Networks (2013), Norwood: Artech House, Norwood
[3] Winzer, Pj, Spatial multiplexing in fiber optics: the 10x scaling of metro/core capacities, Bell Labs Tech. J., 19, 22 (2014)
[4] Winzer, Pj, Scaling optical fiber networks: challenges and solutions, Opt. Photonics News, 26, 28 (2015)
[5] Thipparapu, N.K., Wang, Y., Umnikov, A.A., Barua, P., Richardson, D.J., Sahu, J.K.: High gain Bi-doped all fiber amplifier for O-band DWDM optical fiber communication. In: Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, M1J.5 (2019)
[6] Turitsyn, Sk; Prilepsky, Je; Le, St; Wahls, S.; Frumin, Ll; Kamalian, M.; Derevyanko, Sa, Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives, Optica, 4, 307 (2017)
[7] Lan, Zz; Su, Jj, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system, Nonlinear Dyn., 96, 2535 (2019)
[8] Lan, Zz; Hu, Wq; Guo, Bl, General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation, Appl. Math. Model., 73, 695 (2019)
[9] Lan, Zz, Periodic, breather and rogue wave solutions for a generalized (3+ 1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94, 126 (2019) · Zbl 1412.35050
[10] Agrawal, Gp, Nonlinear Fiber Optics (1995), New York: Academic Press, New York
[11] Hasegawa, A., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I, Anomalous dispersion. Appl. Phys. Lett., 23, 142 (1973)
[12] Akhmediev, N.; Ankiewicz, A., Multi-soliton complexes, Chaos, 10, 600 (2000) · Zbl 0971.78011
[13] Gao, Xy; Guo, Yj; Shan, Wr, Water-wave symbolic computation for the Earth, Enceladus and Titan: higher-order Boussinesq-Burgers system, auto- and non-auto-Backlund transformations, Appl. Math. Lett. (2019)
[14] Gao, Xy, Mathematical view with observational/experimental consideration on certain \((2+1)\)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett., 91, 165-172 (2019) · Zbl 1445.76101
[15] Su, Jj; Gao, Yt; Ding, Cc, Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows, Appl. Math. Lett., 88, 201 (2019) · Zbl 1448.76087
[16] Su, Jj; Gao, Yt, Solitons for a \((2+1)\)-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber, Wave. Random Complex, 28, 708 (2018)
[17] Jia, Tt; Gao, Yt; Feng, Yj; Hu, L.; Su, Jj; Li, Lq; Ding, Cc, On the quintic time-dependent coefficient derivative nonlinear Schrodinger equation in hydrodynamics or fiber optics, Nonlinear Dyn., 96, 229 (2019)
[18] Jia, Tt; Gao, Yt; Deng, Gf; Hu, L., Quintic time-dependent-coefficient derivative nonlinear Schrodinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons, Nonlinear Dyn., 98, 269 (2019) · Zbl 1430.74073
[19] Ding, Cc; Gao, Yt; Hu, L.; Jia, Tt, Soliton and breather interactions for a coupled system, Eur. Phys. J. Plus, 133, 406 (2018)
[20] Ding, Cui-Cui; Gao, Yi-Tian; Li, Liu-Qing, Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma, Chaos, Solitons & Fractals, 120, 259-265 (2019)
[21] Deng, Gf; Gao, Yt; Gao, Xy, Backlund transformation, infinitely-many conservation laws, solitary and periodic waves of an extended \((3+1)\)-dimensional Jimbo-Miwa equation with time-dependent coefficients, Wave. Random Complex, 28, 468 (2018)
[22] Deng, Gf; Gao, Yt; Su, Jj; Ding, Cc, Multi-breather wave solutions for a generalized \((3+1)\)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid, Appl. Math. Lett., 98, 177 (2019) · Zbl 1448.35390
[23] Feng, Yj; Gao, Yt; Yu, X., Soliton dynamics for a nonintegrable model of light-colloid interactive fluids, Nonlinear Dyn., 91, 29 (2018)
[24] Feng, Yj; Gao, Yt; Li, Lq; Jia, Tt, Bilinear form and solutions of a \((3+1)\)-dimensional generalized nonlinear evolution equation for the shallow-water waves, Appl. Anal. (2019)
[25] Xie, X.Y., Yang, S.K., Ai, C.H., Kong, L.C.: Integrable turbulence for a coupled nonlinear Schrödinger system. Phys. Lett. A. 10.1016/j.physleta.2019.126119
[26] Xie, Xy; Meng, Gq, Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics, Eur. Phys. J. Plus, 134, 359 (2019)
[27] Christodoulides, Dn; Joseph, Ri, Vector solitons in birefringent nonlinear dispersive media, Opt. Lett., 13, 53 (1988)
[28] Mitchell, M.; Chen, Z.; Shih, Mf; Segev, M., Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., 77, 490 (1996)
[29] Mitchell, M.; Segev, M., Self-trapping of incoherent white light, Nature, 387, 880 (1997)
[30] Mitchell, M.; Segev, M.; Christodoulides, Dn, Observation of multihump multimode solitons, Phys. Rev. Lett., 80, 4657 (1998) · Zbl 1063.78528
[31] Tang, Dy; Zhang, H.; Zhao, Lm; Wu, X., Observation of high-order polarization-locked vector solitons in a fiber laser, Phys. Rev. Lett., 101, 153904 (2008)
[32] Zhang, H.; Tang, Dy; Zhao, Lm; Knize, Rj, Vector dark domain wall solitons in a fiber ring laser, Opt. Express, 18, 4428 (2010)
[33] Zhang, H.; Tang, Dy; Zhao, Lm; Wu, X., Dark pulse emission of a fiber laser, Phys. Rev. A, 80, 045803 (2009)
[34] Ostrovskaya, Ea; Kivshar, Ys; Skryabin, Dv; Firth, Wj, Stability of multihump optical solitons, Phys. Rev. Lett., 83, 296 (1999) · Zbl 1064.78520
[35] Pelinovsky, E.; Yang, J., Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations, Stud. Appl. Math., 115, 109 (2005) · Zbl 1145.35461
[36] Kanna, T.; Vijayajayanthl, M.; Lakshmanan, M., Coherently coupled bright optical solitons and their collisions, J. Phys. A, 43, 434018 (2010) · Zbl 1202.35300
[37] Liu, L.; Tian, B.; Chai, Hp; Yuan, Yq, Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber, Phys. Rev. E, 95, 032202 (2017)
[38] Akhmediev, Nn; Buryak, Av; Soto-Crespo, Jm; Andersen, Dr, Phase-locked stationary soliton states in birefringent nonlinear optical fibers, J. Opt. Soc. Am. B, 12, 434 (1995)
[39] Stratmann, M.; Pagel, T.; Mitschke, F., Experimental observation of temporal soliton molecules, Phys. Rev. Lett., 95, 143902 (2005)
[40] Herink, G.; Kurtz, F.; Jalali, B.; Solli, Dr; Ropers, C., Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules, Science, 356, 50 (2017)
[41] Manakov, Sv, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 38, 248 (1974)
[42] Radhakrishnan, R.; Lakshmanan, M.; Hietarinta, J., Inelastic collision and switching of coupled bright solitons in optical fibers, Phys. Rev. E, 56, 2213 (1997)
[43] Anastassiou, C.; Segev, M.; Steiglitz, K.; Giordmaine, Ja; Mitchell, M.; Shih, Mf; Lan, S.; Martin, J., Energy-exchange interactions between colliding vector solitons, Phys. Rev. Lett., 83, 2332 (1999)
[44] Kang, Ju; Stegeman, Gi; Aitchison, Js; Akhmediev, N., Observation of Manakov spatial solitons in AlGaAs planar waveguides, Phys. Rev. Lett., 76, 3699 (1996)
[45] Rand, D.; Glesk, I.; Bres, Cs; Nolan, Da; Chen, X.; Koh, J.; Fleischer, Jw; Steiglitz, K.; Prucnal, Pr, Observation of temporal vector soliton propagation and collision in birefringent fiber, Phys. Rev. Lett., 98, 053902 (2007)
[46] Stalin, S.; Ramakrishnan, R.; Senthilvelan, M.; Lakshmanan, M., Nondegenerate solitons in Manakov system, Phys. Rev. Lett., 122, 043901 (2019)
[47] Lenells, J., Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math, 123, 215 (2009) · Zbl 1171.35473
[48] Fokas, As, On a class of physically important integrable equations, Phys. D, 87, 145 (1995) · Zbl 1194.35363
[49] Guo, Bl; Ling, Ll, Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys, 53, 073506 (2012) · Zbl 1276.81068
[50] Chen, Sh; Ye, Yl; Soto-Crespo, Jm; Grelu, P.; Baronio, F., Peregrine solitons beyond the threefold limit and their two-soliton interactions, Phys. Rev. Lett., 121, 104101 (2018)
[51] Ling, Lm; Feng, Bf; Zhu, Zn, General soliton solutions to a coupled Fokas-Lenells equation, Nonlinear Anal. Real World Appl., 40, 185 (2018) · Zbl 1382.35068
[52] Kanna, T.; Lakshmanan, M., Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett., 86, 5043 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.