×

zbMATH — the first resource for mathematics

Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers. (English) Zbl 1204.78025
Summary: We investigate a nonlinear Schrödinger equation with varying dispersion, nonlinearity and loss for the propagation of ultra-short optical pulses in the normal dispersion regime of optical fibers. By virtue of the modified Hirota’s method and symbolic computation, the analytic two-soliton solution is explicitly obtained. Both the bright and dark solitons are observed in the normal dispersion regime of optical fibers with dispersion management. An asymptotic analysis to verify the elastic collision between solitons is performed and the stability of the soliton solutions is investigated. Besides, a new bright solitonic generator for generating high-power and narrow bandwidth pulses is advised. Furthermore, possible applicable soliton control techniques which might be used for the design of optical switch and dispersion-managed systems are proposed.
MSC:
78A60 Lasers, masers, optical bistability, nonlinear optics
35Q55 NLS equations (nonlinear Schrödinger equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.1654836 · doi:10.1063/1.1654836
[2] DOI: 10.1103/PhysRevLett.45.1095 · doi:10.1103/PhysRevLett.45.1095
[3] DOI: 10.1016/j.physleta.2007.02.098 · Zbl 1203.81067 · doi:10.1016/j.physleta.2007.02.098
[4] DOI: 10.1016/S0370-1573(97)00073-2 · doi:10.1016/S0370-1573(97)00073-2
[5] Agrawal GP, Nonlinear Fiber Optics,, 3. ed. (2002)
[6] DOI: 10.1002/qua.20097 · doi:10.1002/qua.20097
[7] DOI: 10.1063/1.873705 · doi:10.1063/1.873705
[8] DOI: 10.1016/j.physleta.2006.11.021 · Zbl 1276.35133 · doi:10.1016/j.physleta.2006.11.021
[9] DOI: 10.1364/OE.15.002963 · doi:10.1364/OE.15.002963
[10] DOI: 10.1016/S1631-0705(03)00008-2 · doi:10.1016/S1631-0705(03)00008-2
[11] DOI: 10.1143/JPSJ.74.1449 · Zbl 1076.78009 · doi:10.1143/JPSJ.74.1449
[12] DOI: 10.1364/OL.25.001753 · doi:10.1364/OL.25.001753
[13] DOI: 10.1103/PhysRevLett.85.4502 · doi:10.1103/PhysRevLett.85.4502
[14] DOI: 10.1364/OL.13.000871 · doi:10.1364/OL.13.000871
[15] DOI: 10.1088/0031-8949/44/2/014 · doi:10.1088/0031-8949/44/2/014
[16] DOI: 10.1103/PhysRevLett.27.1192 · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[17] DOI: 10.1103/PhysRevE.71.036616 · doi:10.1103/PhysRevE.71.036616
[18] DOI: 10.1063/1.2997340 · doi:10.1063/1.2997340
[19] DOI: 10.1364/OL.16.001231 · doi:10.1364/OL.16.001231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.