×

Numerical simulation of a laser resonator with an in-phase doughnut-like output beam. (English) Zbl 1184.78063

Summary: A numerical model of the toric concave mirror laser resonator is founded by using the eigenvector method. Numerical calculation shows that an in-phase doughnut-like beam mode with high beam quality can be obtained in this resonator, whose diffraction loss is the lowest, and whose intensity distribution covers the whole resonator mirror. Systematical simulations indicate that, different from the spherical stable resonator, the effects of Fresnel number of the resonator and curvature radius of the toric concave total reflector on output beam quality is not very obvious. Under the condition of curvature radius of 15 m, the \(M^{2}\) factor of the output beam of this resonator with a large range of Fresnel number from 6.2 to 12.6 is from 1.3 to 1.9. Furthermore, the diffraction loss is close to 1.0% or less than 1.0%. Under the condition of Fresnel number of 7.07, the \(M^{2}\) factor of the output beam of this resonator with curvature radius from 6 to 30 m is from 1.60 to 1.24, and the diffraction loss is close to 1.0% or less than 1.0%.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
78M25 Numerical methods in optics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1117/12.18425 · doi:10.1117/12.18425
[2] DOI: 10.1016/j.optlastec.2005.11.005 · doi:10.1016/j.optlastec.2005.11.005
[3] DOI: 10.3788/CJL20083510.1463 · doi:10.3788/CJL20083510.1463
[4] DOI: 10.1364/AO.34.000400 · doi:10.1364/AO.34.000400
[5] DOI: 10.1364/OL.22.000037 · doi:10.1364/OL.22.000037
[6] DOI: 10.1364/OL.15.001452 · doi:10.1364/OL.15.001452
[7] DOI: 10.1364/OL.17.000739 · doi:10.1364/OL.17.000739
[8] DOI: 10.1364/OE.3.000180 · doi:10.1364/OE.3.000180
[9] DOI: 10.1364/OPEX.12.001959 · doi:10.1364/OPEX.12.001959
[10] DOI: 10.1364/OE.15.005482 · doi:10.1364/OE.15.005482
[11] DOI: 10.1364/OL.32.001824 · doi:10.1364/OL.32.001824
[12] DOI: 10.1364/OL.34.001120 · doi:10.1364/OL.34.001120
[13] DOI: 10.1016/j.optcom.2004.01.045 · doi:10.1016/j.optcom.2004.01.045
[14] DOI: 10.1364/AO.38.003298 · doi:10.1364/AO.38.003298
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.