×

Multi-soliton and double Wronskian solutions of a \((2+1)\)-dimensional modified Heisenberg ferromagnetic system. (English) Zbl 1368.35256

Summary: A \((2+1)\)-dimensional modified Heisenberg ferromagnetic system, which arises in the motion of magnetization vector of the isotropic ferromagnet and biological pattern formation, is investigated. Via the Hirota bilinear method, multi-soliton solutions of such a system are derived. It is proved that the system possesses the \(N\)-soliton solutions expressed in terms of the double Wronskian determinant. Head-on and overtaking elastic interactions are exhibited. Elastic interaction behavior between the two solitons has been interpreted through the asymptotic analysis, namely, amplitude and velocity of each soliton remain unchanged except for the phase shift after the interaction. Inelastic interactions including the soliton fusion and fission between two solitons are shown. During the soliton propagation, for the product of two fields, the soliton with the smaller amplitude can travel faster than with the larger, while for the third field, the soliton with the larger amplitude can travel faster than with the smaller. On the other hand, the soliton for the third field may exhibit the solitoff-like property. With respect to the three solitons, head-on elastic interaction can be found.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35C08 Soliton solutions
78A30 Electro- and magnetostatics
78M25 Numerical methods in optics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hanus, J., Bound states in the Heisenberg ferromagnet, Phys. Rev. Lett., 11, 336-338 (1963)
[2] Arnesen, M. C.; Bose, S.; Vedral, V., Natural thermal and magnetic entanglement in the 1D Heisenberg model, Phys. Rev. Lett., 87, 017901 (2001)
[3] Singer, R.; Dietermann, F.; Fähnle, M., Spin interactions in bcc and fcc Fe beyond the Heisenberg model, Phys. Rev. Lett., 107, 017204 (2011)
[4] Härtel, M.; Richter, J.; Ihle, D., Thermodynamics of the frustrated one-dimensional spin-\( \frac{1}{2}\) Heisenberg ferromagnet in a magnetic field, Phys. Rev. B, 83, 214412 (2011)
[5] Park, S.; Choi, Y. J.; Zhang, C. L.; Cheong, S. W., Ferroelectricity in an \(S = \frac{1}{2}\) chain cuprate, Phys. Rev. Lett., 98, 057601 (2007)
[6] Trumper, A. E.; Manuel, L. O.; Gazza, C. J.; Ceccatto, H. A., Schwinger-Boson approach to quantum spin systems: Gaussian fluctuations in the “natural” gauge, Phys. Rev. Lett., 78, 2216 (1997)
[7] Härtel, M.; Richter, J.; Ihle, D.; Drechsler, S. L., Thermodynamics of a two-dimensional frustrated spin-\( \frac{1}{2}\) Heisenberg ferromagnet, Phys. Rev. B, 81, 174421 (2010)
[8] Huang, N. N.; Chen, Z. Y.; Liu, Z. Z., Exact soliton solutions for a spin chain with an easy plane, Phys. Rev. Lett., 75, 1395-1398 (1995)
[9] Zagorodny, J. P.; Gaididei, Y.; Sheka, D. D.; Caputo, J. G.; Mertens, F. G., Importance of the internal shape mode in magnetic vortex dynamics, Phys. Rev. Lett., 93, 167201 (2004)
[10] Zheng, Z. X.; Li, Q. Y.; Li, Z. D.; Wang, S. X.; Xu, L. P.; Wen, T. D., New properties of magnon density in uniaxial anisotropic ferromagnet on the background of spin wave, Ann. Phys., 324, 1612-1619 (2009) · Zbl 1171.82018
[11] Ablowitz, M. J.; Clarkson, P. A., Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0762.35001
[12] Mingaleev, S. F.; Christiansen, P. L.; Gaididei, Y. B.; Johansson, M.; Rasmussen, K.Ø., Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25, 41-63 (1999)
[13] Trombettoni, A.; Smerzi, A., Discrete solitons and breathers with dilute Bose-Einstein condensates, Phys. Rev. Lett., 86, 2353-2356 (2001)
[14] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J. M., The Peregrine soliton in nonlinear fibre optics, Nature Phys., 6, 790-795 (2010)
[15] Ivancevic, V. G.; Ivancevic, T. T., Ricci flow and nonlinear reaction-diffusion systems in biology, chemistry, and physics, Nonl. Dynam., 65, 35-54 (2011) · Zbl 1402.92176
[16] Misra, A. P.; Shukla, P. K., Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations, Phys. Rev. E, 79, 056401 (2009)
[17] Nohara, B. T., Governing equations of envelopes created by nearly bichromatic waves on deep water, Nonl. Dynam., 50, 49-60 (2007) · Zbl 1181.76036
[18] Tan, B. K.; Boyd, J. P., Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations, Chaos Solitons Fract., 12, 721-734 (2001) · Zbl 1022.35070
[19] Zhang, H. Q.; Tian, B.; Lü, X.; Meng, X. H., Soliton dynamics and elastic collisions in a spin chain with an external time-dependent magnetic field, Phys. A, 389, 367-374 (2010)
[20] Ding, Q.; Zhu, Z. N., On the gauge equivalent structure of the modified nonlinear Schrödinger equation, Phys. Lett. A, 295, 192-197 (2002) · Zbl 1041.35071
[21] Zhao, W. Z.; Bai, Y. Q.; Wu, K., Generalized inhomogeneous Heisenberg ferromagnet model and generalized nonlinear Schrödinger equation, Phys. Lett. A, 352, 64-68 (2006) · Zbl 1187.82032
[22] Tang, X. Y.; Lou, S. Y.; Zhang, Y., Localized excitations in (2+1)-dimensional systems, Phys. Rev. E, 66, 046601 (2002)
[23] Myrzakulov, R.; Vijayalakshmi, S.; Syzdykova, R. N.; Lakshmanan, M., On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrödinger equations, J. Math. Phys., 39, 2122-2140 (1998) · Zbl 1001.37057
[24] Myrzakulov, R.; Nugmanova, G. N.; Syzdykova, R. N., Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations, J. Phys. A, 31, 9535-9545 (1998) · Zbl 0953.82017
[25] Ding, Q., The gauge equivalence of the NLS and the Schrödinger flow of maps in 2+1 dimensions, J. Phys. A, 32, 5087-5096 (1999) · Zbl 0941.35104
[26] Anco, S. C.; Myrzakulov, R., Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces, J. Geom. Phys., 60, 1576-1603 (2010) · Zbl 1195.53062
[27] Duan, X. J.; Deng, M.; Zhao, W. Z.; Wu, K., The prolongation structure of the inhomogeneous equation of the reaction-diffusion type, J. Phys. A, 40, 3831-3837 (2007) · Zbl 1112.35103
[28] Thomas, B. B.; Victor, K. K.; Crepin, K. T., The structures and interactions of solitary waves in a (2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation, J. Phys. A, 41, 135208 (2008) · Zbl 1148.82008
[29] Victor, K. K.; Thomas, B. B.; Kofane, T. C., Painlevé-integrability of a (2+1)-dimensional reaction-diffusion equation: exact solutions and their interactions, Phys. Rev. E, 79, 056605 (2009)
[30] Koch, A. J.; Meinhardt, H., Biological pattern formation: from basic mechanisms to complex structures, Rev. Mod. Phys., 66, 1481-1507 (1994)
[31] Ablowitz, M. J.; Kaup, D. J.; Newll, A. C.; Segur, H., Nonlinear evolution equations of physical significance, Phys. Rev. Lett., 31, 125-127 (1973) · Zbl 1243.35143
[32] Leble, S. B.; Ustinov, N. V., Third order spectral problems: reductions and Darboux transformations, Inv. Prob., 10, 617-633 (1994) · Zbl 0806.35170
[33] Estévez, P. G.; Gordoa, P. R., Darboux transformation and solutions for an equation in 2+1 dimensions, Inv. Prob., 13, 939-957 (1997) · Zbl 0881.35103
[34] Guo, B. L.; Ling, L. M.; Liu, Q. P., Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 026607 (2012)
[35] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1099.35111
[36] Ohta, Y.; Yang, J. K., Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E, 86, 036604 (2012)
[37] Zhang, Y.; You, Y. C.; Ma, W. X.; Zhao, H. Q., Resonance of solitons in a coupled higher-order Ito equation, J. Math. Anal. Appl., 394, 121-128 (2012) · Zbl 1251.35117
[38] Nimmo, J. J.; Freeman, N. C., The use of Bäcklund transformations in obtaining \(N\)-soliton solutions in Wronskian form, J. Phys. A, 17, 1415-1424 (1984) · Zbl 0552.35071
[39] Willox, R.; Tokihiro, T.; Satsuma, J., Darboux and binary Darboux transformations for the nonautonomous discrete KP equation, J. Math. Phys., 38, 6455-6469 (1997) · Zbl 0898.58046
[40] Maruno, K.; Kajiwara, K.; Oikawa, M., Casorati determinant solution for the discrete-time relativistic Toda lattice equation, Phys. Lett. A, 241, 335-343 (1998) · Zbl 0949.37045
[41] Ma, W. X.; You, Y. C., Rational solutions of the Toda lattice equation in Casoratian form, Chaos Solitons Fract., 22, 395-406 (2004) · Zbl 1090.37053
[42] Ma, W. X., An application of the Casoratian technique to the 2D Toda lattice equation, Mod. Phys. Lett., 22, 1815-1825 (2008) · Zbl 1153.82310
[43] Fan, E. G.; Hon, Y. C., Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions, Phys. Rev. E, 78, 036607 (2008)
[44] Chow, K. W., A class of doubly periodic waves for nonlinear evolution equations, Wave Motion, 35, 71-90 (2002) · Zbl 1163.74329
[45] Deng, S. F., The decay mode solutions for the cylindrical KP equation, Appl. Math. Comput., 218, 5974-5981 (2012) · Zbl 1244.35122
[46] Ma, W. X.; Fan, E. G., Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61, 950-959 (2011) · Zbl 1217.35164
[47] Ma, W. X.; Zhang, Y.; Tang, Y. N.; Tu, J. Y., Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218, 7174-7183 (2012) · Zbl 1245.35109
[48] Freeman, N. C.; Nimmo, J. J., Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Proc. R. Soc. Lond. Ser. A, 389, 319-329 (1983) · Zbl 0588.35077
[49] Yin, F. M.; Chen, P.; Wang, G. S.; Chen, D. Y., Generalized double Wronskian solutions of the third-order isospectral AKNS equation, Chaos Solitons Fract., 39, 926-935 (2009) · Zbl 1197.35255
[50] Ma, W. X.; Li, C. X.; He, J. S., A second Wronskian formulation of the Boussinesq equation, Nonl. Anal., 70, 4245-4258 (2009) · Zbl 1159.37425
[51] Ma, W. X., Generalized bilinear differential equations, Stud. Nonl. Sci., 2, 140-144 (2011)
[52] Ma, W. X., Bilinear equations, Bell polynomials and linear superposition principle, J. Phys.: Conf. Ser., 411, 012021 (2013)
[53] Lü, X., Novel behavior and properties forthe nonlinear pulse propagation in optical fibers, Europhys. Lett., 97, 10005 (2012)
[54] Jiang, Y.; Tian, B.; Liu, W. J.; Sun, K.; Li, M.; Wang, P., Soliton interactions and complexes for coupled nonlinear Schrodinger equations, Phys. Rev. E, 85, 036605 (2012)
[55] Ma, W. X.; You, Y. C., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753-1778 (2005) · Zbl 1062.37077
[56] Yu, X.; Gao, Y. T.; Sun, Z. Y.; Liu, Y., Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids, Nonl. Dynam., 67, 1023-1030 (2012) · Zbl 1356.35212
[57] Radha, R.; Lou, S. Y., Integrability and novel localized solutions in the (2+1) dimensional generalized Sasa-Satsuma equation, Phys. Scr., 72, 432-438 (2005) · Zbl 1090.35160
[58] Chow, K. W., ‘Solitoff’ solutions of nonlinear evolution equations, J. Phys. Soc. Jpn., 65, 1971-1976 (1996) · Zbl 0944.35088
[59] Lü, X., Vector bright soliton behaviors associated with negative coherent coupling, Phys. Rev. E, 85, 026117 (2012)
[60] Lü, X., Soliton solutions via auxiliary function method for a coherently-coupled model in the optical fiber communications, Nonl. Anal. Real World Applic., 14, 929-939 (2013) · Zbl 1261.35134
[61] Jiang, Y.; Tian, B.; Liu, W. J.; Li, M.; Wang, P.; Sun, K., Solitons, Backlund transformation, and Lax pair for the \((2 + 1)\)-dimensional Boiti-Leon-Pempinelli equation for the water waves, J. Math. Phys., 51, 093519 (2010) · Zbl 1309.76036
[62] Wang, P.; Tian, B.; Liu, W. J.; Li, M.; Sun, K., Soliton solutions for a generalized inhomogeneous variable-coefficient hirota equation with symbolic computation, Stud. Appl. Math., 125, 213-222 (2010) · Zbl 1196.35190
[63] Wang, P.; Tian, B.; Liu, W. J.; Qu, Q. X.; Li, M.; Sun, K., Lax pair, conservation laws and N-soliton solutions for the extended Korteweg-de Vries equations in fluids, Eur. Phys. J. D, 61, 701-708 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.