×

The elastic dynamics analysis of FGM using a meshless RRKPM. (English) Zbl 07371644

Summary: The radial basis reproducing kernel particle method (RRKPM) has been constructed by introducing the radial basis function (RBF) into the reproducing kernel particle method (RKPM). In this article, the RRKPM is extended to the elastic dynamic analysis of the functionally graded material (FGM), and the elastic dynamics governing equation of the FGM based on the RRKPM is obtained. Then, the influence of the penalty factor, the scaling parameter and the shaped parameter are discussed. Finally, numerical examples of the FGM verify that the RRKPM has a smaller calculation error than the RKPM, and prove the correctness of the RRKPM for solving the elastic dynamics problems of the FGM.

MSC:

74-XX Mechanics of deformable solids
82-XX Statistical mechanics, structure of matter
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Huang, C.; Long, T.; Li, S. M.; Liu, M. B., A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils, Eng Anal Bound Elem, 106, 571-587 (2019) · Zbl 1464.76139
[2] Huang, R.; Zheng, S. J.; Liu, Z. S.; Ng, T. Y., Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers, Int J of Appl Mech, 12, 2, Article 2050014 pp. (2020)
[3] Cheng, A. H.D.; Hong, Y. X., An overview of the method of fundamental solutions-Solvability, uniqueness, convergence, and stability, Eng Anal Bound Elem, 120, 118-152 (2020) · Zbl 1464.65264
[4] Zhang, Z. L.; Liu, M. B., Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces, Eng Anal Bound Elem, 83, 141-157 (2017) · Zbl 1403.74333
[5] Ma, J. C.; Gao, H. F.; Wei, G. F.; Qiao, J. W., The meshless analysis of wave propagation based on the Hermit-type RRKPM, Soil Dyn Earthq Eng, 134, Article 106154 pp. (2020)
[6] Liu, Z.; Wei, G. F.; Wang, Z. M.; Qiao, J. W., The meshfree analysis of geometrically nonlinear problem based on radial basis reproducing kernel particle method, Int J Appl Mech, 12, 4, Article 2050044 pp. (2020)
[7] Yu, S. Y.; Peng, M. J.; Cheng, H.; Cheng, Y. M., The improved element-free Galerkin method for three-dimensional elastoplasticity problems, Eng Anal Bound Elem, 104, 215-224 (2019) · Zbl 1464.74225
[8] Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M., The hybrid element-free Galerkin method for three-dimensional wave propagation problems, Int J Numer Meth Eng, 117, 15-37 (2019)
[9] Liu, Z.; Wei, G. F.; Wang, Z. M., Numerical solution of functionally graded materials based on radial basis reproducing kernel particle method, Eng Anal Bound Elem, 111, 32-43 (2020) · Zbl 1464.65262
[10] Liu, F. B.; Wu, Q.; Cheng, Y. M., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, Int J Appl Mech, 11, 1, Article 1950006 pp. (2019)
[11] Gao, H. F.; Wei, G. F., Complex variable meshless manifold method for transient heat conduction problems, Int J Appl Mech, 9, Article 1750067 pp. (2017)
[12] Liu, Z.; Wei, G. F.; Wang, Z. M., Geometrically nonlinear analysis of functionally graded materials based on reproducing kernel particle method, Int J Mech Mater Des, 16, 487-502 (2020)
[13] Rao, B. N.; Rahman, S., Mesh-free analysis of cracks in isotropic functionally graded materials, Eng Fract Mech, 70, 1, 1-27 (2003)
[14] Liu, F. B.; Cheng, Y. M., The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, Int J Appl Mech, 10, 4, Article 1850047 pp. (2018)
[15] Wu, C. P.; Yang, S. W., RMVT-based meshless collocation and element-free Galerkin methods for the approximate 3D analysis of multilayered composite and FGM circular hollow cylinders, Compos Part B-Eng, 42, 6, 1683-1700 (2011)
[16] Wu, C. P.; Chiu, K. H., RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, Compos Struct, 93, 5, 1433-1448 (2011)
[17] Shahram, H.; Gholamhossein, R.; Yavar, A., A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT, Eng Anal Bound Elem, 125, 168-177 (2021) · Zbl 1464.74372
[18] Fang, H.; Zhang, H.; Shan, F. L.; Tie, M.; Zhang, X.; Sun, J. H., Efficient mesh deformation using radial basis functions with a grouping-circular-based greedy algorithm, J Comput Phys, 433, Article 110200 pp. (2021)
[19] Marchi, S. D.; Wendland, H., On the convergence of the rescaled localized radial basis function method, Appl Math Lett, 99, Article 105996 pp. (2020) · Zbl 1468.65011
[20] Wijayanta, A. T.; Pranowo, A localized meshless approach using radial basis functions for conjugate heat transfer problems in a heat exchanger, Int J Refrig, 110, 38-46 (2020)
[21] Neves, A. M.A.; Ferreira, A. J.M.; Carrera, E.; Cinefra, M.; Roque, C. M.C.; Jorge, R. M.N.; Soares, C. M.M., Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations, Eur J Mech A-Solid, 37, 24-34 (2013) · Zbl 1347.74038
[22] Neves, A. M.A.; Ferreira, A. J.M.; Carrera, E.; Cinefra, M.; Jorge, R. M.N.; Soares, C. M.M., Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions, ZAMM-J Appl Math Mech, 92, 9, 749-766 (2012) · Zbl 1348.74129
[23] Gilhooley, D. F.; Batra, R. C.; Xiao, J. R.; McCarthy, M. A.; Gillespie, J. W., Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions, Compos Struct, 80, 4, 539-552 (2007) · Zbl 1120.74865
[24] Wen, P. H.; Aliabadi, M. H., Analysis of functionally graded plates by meshless method: a purely analytical formulation, Eng Anal Bound Elem, 36, 5, 639-650 (2012) · Zbl 1351.74060
[25] Chu, F. Y.; He, J. Z.; Wang, L. H.; Zhong, Z., Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity, Eng Anal Bound Elem, 65, 112-125 (2016) · Zbl 1403.74031
[26] Peng, P. P.; Wu, Q.; Cheng, Y. M., The dimension splitting reproducing kernel particle method for three-dimensional potential problems, Int J Numer Methods Eng, 121, 1, 146-164 (2020)
[27] Neofytou, A.; Picelli, R.; Huang, T. H.; Chen, J. S.; Kim, H. A., Level set topology optimization for design-dependent pressure loads using the reproducing kernel particle method, Struct Multidiscip Optim, 61, 1805-1820 (2020)
[28] Khezri, M.; Gharib, M.; Rasmussen, K. J.R., A unified approach to meshless analysis of thin to moderately thick plates based on a shear-locking-free Mindlin theory formulation, Thin Wall Struct, 124, 161-179 (2018)
[29] Zhao, X.; Lee, Y. Y.; Liew, K. M., Free vibration analysis of functionally graded plates using the element-free kp-Ritz method, J Sound Vib, 319, 3, 918-939 (2008)
[30] Zhao, X.; Lee, Y. Y.; Liew, K. M., Thermoelastic and vibration analysis of functionally graded cylindrical shells, Int J Mech Sci, 51, 9, 694-707 (2009)
[31] Zhao, X.; Liew, K. M., Free vibration analysis of functionally graded conical shell panels by a meshless method, Compos Struct, 93, 2, 649-664 (2011)
[32] Shams, S.; Soltani, B., The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method, Polym Compos, 38, S1, E531-E541 (2017)
[33] Memar Ardestani, M.; Soltani, B.; Shams, S., Analysis of functionally graded stiffened plates based on FSDT utilizing reproducing kernel particle method, Compos Struct, 112, 231-240 (2014)
[34] Kiani, K., Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model, Compos Struct, 139, 151-166 (2016)
[35] Saljooghi, R.; Ahmadiana, M. T.; Farrahi, G. H., Vibration and buckling analysis of functionally graded beams using reproducing kernel particle method, Sci Iran, 21, 6, 1896-1906 (2014)
[36] Zhang, T.; Wei, G. F.; Ma, J. C.; Gao, H. F., Radial basis reproducing kernel particle method for piezoelectric materials, Eng Anal Bound Elem, 92, 171-179 (2018) · Zbl 1403.74331
[37] Bever, M. B.; Shen, M., The morphology of polymeric alloys, Mater Sci Eng, 15, 2-3, 145-157 (1974)
[38] Koizumi, M., The concept of FGM, Ceram Trans, 34, 1, 3-10 (1993)
[39] Qu, W. Z.; Fan, C. M.; Zhang, Y. M., Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method, Int J Heat Mass Transf, 118, 188-201 (2020)
[40] Kutiš, V.; Murín, J.; Belák, R.; Paulech, J., Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials, Comput Struct, 89, 11, 1192-1205 (2010)
[41] Malikan, M.; Eremeyev, V. A., A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition, Compos Struct, 249, Article 112486 pp. (2020)
[42] Li, W. K.; Han, B. H., Research and application of functionally gradient materials, IOP-Conf Ser, 394, 2, Article 022065 pp. (2018)
[43] Chen, S. S.; Xu, C. J.; Tong, G. S.; Wei, X., Free vibration of moderately thick functionally graded plates by a meshless local natural neighbour interpolation method, Eng Anal Bound Elem, 61, 114-126 (2015) · Zbl 1403.74296
[44] Hussein, O. S.; Mulani, S. B., Nonlinear aeroelastic stability analysis of in-plane functionally graded metal nanocomposite thin panels in supersonic flow, Thin Wall Struct, 139, 398-411 (2019)
[45] Mustapha, K. B., On the dynamic model of a functionally graded spinning structural element of an aircraft appendage, Appl Mech Mater, 3446, 89-94 (2014)
[46] Do, T. V.; Bui, T. Q.; Yu, T. T.; Pham, D. T.; Nguyen, C. T., Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment, J Comput Sci-Neth, 21, 164-181 (2017)
[47] Houari, M. S.A.; Tounsi, A.; Anwar Bég, O., Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory, Int J Mech Sci, 76, 102-111 (2013)
[48] Mehboob, H.; Chang, S. H., Evaluation of the development of tissue phenotypes: bone fracture healing using functionally graded material composite bone plates, Compos Struct, 117, 105-113 (2014)
[49] Satapathy, P. K.; Sahoo, B.; Panda, L. N.; Das, S., Finite element analysis of functionally graded bone plate at femur bone fracture site, IOP-Conf Ser, 330, 1, Article 012027 pp. (2018)
[50] Chen, S. S.; Wang, W.; Zhao, X. S., An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis, Appl Math Model, 75, 494-505 (2019) · Zbl 1481.74708
[51] Chen, S. S.; Li, Q. H.; Liu, Y. H.; Xia, J. T.; Xue, Z. Q., Dynamic elastoplastic analysis using the meshless local natural neighbour interpolation method, Int J Comput Meth-Sing, 8, 3, 463-481 (2011) · Zbl 1245.74006
[52] Liu, Z.; Wei, G. F.; Wang, Z. M., The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials, Appl Math Model, 85, 244-272 (2020)
[53] Khodakarami, M. I.; Khaji, N.; Ahmadi, M. T., Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations, Comput Method Appl Mech Eng, 213-6, 183-195 (2012) · Zbl 1243.74047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.