The elastoplastic analysis of functionally graded materials using a meshfree RRKPM. (English) Zbl 07427474

Summary: A meshfree approach, the radial basis reproducing kernel particle method (RRKPM), is proposed in this study, which is based on the radial basis functions (RBFs) and the reproducing kernel particle method (RKPM). The presented approach eliminates the negative effects of different kernel functions on numerical accuracy, which has the advantages of greater accuracy and convergence. Furthermore, the presented approach is adopted to solve the elastoplastic problem of functionally graded materials (FGMs). Using Galerkin weak form of elastoplastic problem, the meshfree RRKPM for elastoplastic problem of FGMs is established, and the penalty method is employed to impose the essential boundary conditions, then the corresponding formulas are obtained. The effects of the scaling factor, loading steps, number of nodes and node distributions on computational results of numerical accuracy are discussed in detail, and the influences of different functional gradient indexes on displacements are studied. To validate the applicability and reliability of the presented meshfree RRKPM, several elastoplastic examples of FGMs are performed and compared to the RKPM and the finite element method (FEM) solutions.


74Sxx Numerical and other methods in solid mechanics
65Nxx Numerical methods for partial differential equations, boundary value problems
74Cxx Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI


[1] Koizumi, M.; Niino, M., Overview of FGM research in Japan, MRS. Bull., 20, 1, 19-21 (1995)
[2] Chen, F.; Jia, M. Y.; She, Y. L.; Wu, Y. Q.; Shen, Q.; Zhang, L. M., Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures, J. Alloys Compd., 816, Article 152512 pp. (2020)
[3] Moleiro, F.; Carrera, E.; Ferreira, A. J.M.; Reddy, J. N., Hygro-thermo-mechanical modelling and analysis of multilayered plates with embedded functionally graded material layers, Compos. Struct., 233, Article 111442 pp. (2020)
[4] Thang, P. T.; Lee, J., Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners, Ocean Eng., 148, 53-61 (2018)
[5] Jojith, R.; Radhika, N., Fabrication of LM 25/WC functionally graded composite for automotive applications and investigation of its mechanical and wear properties, J. Braz. Soc. Mech. Sci. Eng., 40, 6, 292 (2018)
[6] Huang, R.; Zheng, S. J.; Liu, Z. S.; Ng, T. Y., Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers, Int. J. Appl. Mech., 12, 2, Article 2050014 pp. (2020)
[7] Bai, Z.; Liu, Y. X.; Yang, J. T.; He, S. Q., Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete, Constr. Build. Mater., 227, Article 116574 pp. (2019)
[8] Zhen, W.; Ma, Y. T.; Ren, X. H.; Lo, S. H., Analysis of functionally graded plates subjected to hygrothermomechanical loads, AIAA J., 54, 11, 3667-3673 (2016)
[9] Heuer, S.; Lienig, T.; Mohr, A.; Weber, Th.; Pintsuk, G.; Coenen, J. W.; Gormann, F.; Theisen, W.; Linsmeier, Ch., Ultra-fast sintered functionally graded Fe/W composites for the first wall of future fusion reactors, Compos. Part. B-Eng., 164, 205-214 (2019)
[10] Sola, A.; Bellucci, D.; Cannillo, V., Functionally graded materials for orthopedic applications - an update on design and manufacturing, Biotechnol. Adv., 34, 5, 504-531 (2016)
[11] Ueda, S., Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading, Theor. Appl. Fract. Mech., 40, 225-236 (2003)
[12] Shi, Z. F.; Chen, Y., Functionally graded piezoelectric cantilever beam under load, Arch. Appl. Mech., 74, 237-247 (2004) · Zbl 1119.74466
[13] Ashida, F.; Morimoto, T.; Ohtsuka, T., Dynamic behavior of thermal stress in a functionally graded material thin film subjected to thermal shock, J. Therm. Stresses., 37, 9, 1037-1051 (2014)
[14] Cho, J. R., Numerical study on crack propagation simulation in functionally graded materials by enriched natural element method, J. Mech. Sci. Technol., 34, 6, 2487-2495 (2020)
[15] Liu, Z.; Wei, G. F.; Wang, Z. M., Numerical analysis of functionally graded materials using reproducing kernel particle method, Int. J. Appl. Mech., 11, 6, Article 1950060 pp. (2019)
[16] Lin, J.; Li, J.; Guan, Y.; Zhao, G.; Naceur, H.; Coutellier, D., Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method, Compos. Struct., 189, 239-246 (2018)
[17] Kazakov, A. L.; Nefedova, O. A.; Spevak, L. F., Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method, Comput. Math. Math. Phys., 59, 6, 1015-1029 (2019) · Zbl 1427.80025
[18] Strelnikova, E.; Kriutchenko, D.; Gnitko, V.; Degtyarev, K., Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations, Eng. Anal. Bound. Elem., 111, 78-87 (2020) · Zbl 1464.76109
[19] Mirzajani, M.; Khaji, N.; Hori, M., Stress wave propagation analysis in one-dimensional micropolar rods with variable cross-section using micropolar wave finite element method, Int. J. Appl. Mech., 10, 4, Article 1850039 pp. (2018)
[20] Kim, J.; Dargush, G. F.; Roh, H.; Ryu, J.; Kim, D., Unified space-time finite element methods for dissipative continua dynamics, Int. J. Appl. Mech., 9, 2, Article 1750019 pp. (2017)
[21] Choi, H.; Yoon, J. W., Stress integration-based on finite difference method and its application for anisotropic plasticity and distortional hardening under associated and non-associated flow rules, Comput. Method Appl. M., 345, 123-160 (2019) · Zbl 1440.74079
[22] Li, X. L.; Dong, H. Y., Error analysis of the meshless finite point method, Appl. Math. Comput., 382, Article 125326 pp. (2020) · Zbl 07208707
[23] Liu, F. B.; Cheng, Y. M., The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, Int. J. Appl. Mech., 10, 4, Article 1850047 pp. (2018)
[24] Wu, Q.; Liu, F. B.; Cheng, Y. M., The interpolating element-free Galerkin method for three-dimensional elastoplasticity problems, Eng. Anal. Bound. Elem., 115, 156-167 (2020) · Zbl 1464.74218
[25] Cheng, A. H.D.; Hong, Y. X., An overview of the method of fundamental solutions - Solvability, uniqueness, convergence, and stability, Eng. Anal. Bound. Elem., 120, 118-152 (2020) · Zbl 1464.65264
[26] Wu, Q.; Peng, P. P.; Cheng, Y. M., The interpolating element-free Galerkin method for elastic large deformation problems, Sci. China Technol. Sci., 64, 364-374 (2021)
[27] Ba, K.; Gakwaya, A., Thermomechanical total Lagrangian SPH formulation for solid mechanics in large deformation problems, Comput. Method Appl. Mech., 342, 458-473 (2018) · Zbl 1440.74011
[28] Serroukh, H. K.; Mabssout, M.; Herreros, M. I., Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems, Appl. Math. Model., 80, 238-256 (2020) · Zbl 1481.65197
[29] Li, W. D.; Nguyen-Thanh, N.; Zhou, K., An isogeometric-meshfree collocation approach for two-dimensional elastic fracture problems with contact loading, Eng. Fract. Mech., 223, Article 106779 pp. (2020)
[30] Tanaka, S.; Suzuki, H.; Sadamoto, S.; Okazawa, S.; Yu, T. T.; Bui, T. Q., Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation, Arch. Appl. Mech., 87, 2, 279-298 (2017)
[31] Liu, F. B.; Wu, Q.; Cheng, Y. M., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, Int. J. Appl. Mech., 11, 1, Article 1950006 pp. (2019)
[32] Vaghefi, R., Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach, Aerosp. Sci. Technol., 104, Article 105916 pp. (2020)
[33] Jankowska, M. A., On elastoplastic analysis of some plane stress problems with meshless methods and successive approximations method, Eng. Anal. Bound. Elem., 95, 12-24 (2018) · Zbl 1403.74018
[34] Dai, B. D.; Wei, D. D.; Ren, H. P.; Zhu, Z., The complex variable meshless local Petrov-Galerkin method for elastodynamic analysis of functionally graded materials, Appl. Math. Comput., 309, 17-26 (2017) · Zbl 1411.74052
[35] Ozdemir, M.; Sadamoto, S.; Tanaka, S.; Okazawa, S.; Yu, T. T.; Bui, T. Q., Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces, Acta Mech., 229, 4995-5012 (2018) · Zbl 1430.74048
[36] Liu, Z.; Wei, G. F.; Wang, Z. M., Geometrically nonlinear analysis of functionally graded materials based on reproducing kernel particle method, Int. J. Mech. Mater. Des., 16, 487-502 (2020)
[37] Sajadi, S. Y.; Abolbashari, M. H.; Hosseini, S. M., Geometrically nonlinear dynamic analysis of functionally graded thick hollow cylinders using total Lagrangian MLPG method, Meccanica, 51, 3, 655-672 (2016) · Zbl 1383.74010
[38] Mukhtar, F. M.; Al-Gadhib, A. H., Collocation method for elastoplastic analysis of a pressurized functionally graded tube, Arabian J. Sci. Eng., 39, 11, 7701-7716 (2014) · Zbl 1327.74142
[39] Vaghefi, R., Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model, Compos. Struct., 242, Article 112144 pp. (2020)
[40] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics, theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[41] Gholami Korzani, M.; Galindo-Torres, S. A.; Scheuermann, A.; Williams, D. J., SPH approach for simulating hydro-mechanical processes with large deformations and variable permeabilities, Acta Geotech., 13, 303-316 (2018)
[42] Liu, Z.; Wei, G. F.; Wang, Z. M.; Qiao, J. W., The meshfree analysis of geometrically nonlinear problem based on radial basis reproducing kernel particle method, Int. J. Appl. Mech., 12, 4, Article 2050044 pp. (2020)
[43] Memar Ardestani, M.; Soltani, B.; Shams, Sh., Analysis of functionally graded stiffened plates based on FSDT utilizing reproducing kernel particle method, Compos. Struct., 112, 231-240 (2014)
[44] Wang, D.; Li, J., A reproducing kernel particle method for solving generalized probability density evolution equation in stochastic dynamic analysis, Comput. Mech., 65, 597-607 (2020)
[45] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations, Comput. Mech., 62, 67-80 (2018) · Zbl 1461.74089
[46] Peng, M. J.; Li, D. M.; Cheng, Y. M., The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems, Eng. Struct., 33, 127-135 (2011)
[47] Liu, Z.; Wei, G. F.; Wang, Z. M., Numerical solution of functionally graded materials based on radial basis reproducing kernel particle method, Eng. Anal. Bound. Elem., 111, 32-43 (2020) · Zbl 1464.65262
[48] Liu, Z.; Wei, G. F.; Wang, Z. M., The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials, Appl. Math. Model., 85, 244-272 (2020) · Zbl 1481.74124
[49] Zhang, T.; Wei, G. F.; Ma, J. C.; Gao, H. F., Radial basis reproducing kernel particle method for piezoelectric materials, Eng. Anal. Bound. Elem., 92, 171-179 (2018) · Zbl 1403.74331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.