×

zbMATH — the first resource for mathematics

A fuzzy multi-objective model for capacity allocation and pricing policy of provider in data communication service with different QoS levels. (English) Zbl 1307.90165
Summary: Data communication service has an important influence on e-commerce. The key challenge for the users is, ultimately, to select a suitable provider. However, in this article, we do not focus on this aspect but the viewpoint and decision-making of providers for order allocation and pricing policy when orders exceed service capacity. It is a multiple criteria decision-making problem such as profit and cancellation ratio. Meanwhile, we know realistic situations in which much of the input information is uncertain. Thus, it becomes very complex in a real-life environment. In this situation, fuzzy sets theory is the best tool for solving this problem. Our fuzzy model is formulated in such a way as to simultaneously consider the imprecision of information, price sensitive demand, stochastic variables, cancellation fee and the general membership function. For solving the problem, a new fuzzy programming is developed. Finally, a numerical example is presented to illustrate the proposed method. The results show that it is effective for determining the suitable order set and pricing policy of provider in data communication service with different quality of service (QoS) levels.

MSC:
90C29 Multi-objective and goal programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90B18 Communication networks in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.csi.2005.06.002 · doi:10.1016/j.csi.2005.06.002
[2] DOI: 10.1016/j.ijpe.2005.04.012 · doi:10.1016/j.ijpe.2005.04.012
[3] Amid SH, International Journal of Production Economics (2007)
[4] DOI: 10.1016/S0377-2217(02)00238-2 · Zbl 1011.90017 · doi:10.1016/S0377-2217(02)00238-2
[5] DOI: 10.1016/S0167-9236(03)00027-7 · doi:10.1016/S0167-9236(03)00027-7
[6] Comer DE, Computer Networks and Internets with Internet Applications,, 3. ed. (2001)
[7] Hwang C, Multiple Objective Decision Making Methods and Application: A State of Art Survey (1979) · doi:10.1007/978-3-642-45511-7
[8] DOI: 10.1016/j.dss.2006.10.008 · doi:10.1016/j.dss.2006.10.008
[9] Kaufmann A, Introduction to Fuzzy Arithmetic: Theory and Applications (1991) · Zbl 0754.26012
[10] DOI: 10.1080/00207720903470122 · Zbl 1386.90016 · doi:10.1080/00207720903470122
[11] DOI: 10.1016/S0925-5273(01)00101-3 · doi:10.1016/S0925-5273(01)00101-3
[12] DOI: 10.1016/j.ijpe.2005.01.005 · doi:10.1016/j.ijpe.2005.01.005
[13] DOI: 10.1016/j.mcm.2006.03.013 · Zbl 1165.90701 · doi:10.1016/j.mcm.2006.03.013
[14] Negi D, Ph.D. Dissertation, in: Fuzzy Analysis and Optimization (1989)
[15] Pan, W, Wang, SY, Zhang, JL, Hua, GW and Xie, G. 2008. Optimal Pricing Policies for Service Products with Two Types Customers. Proceedings of The 2008 International Conference on e-Risk Management (ICeRM 2008). 2008. pp.325–331.
[16] DOI: 10.1016/0925-5273(91)90060-7 · doi:10.1016/0925-5273(91)90060-7
[17] DOI: 10.1016/j.websem.2003.11.006 · Zbl 05461278 · doi:10.1016/j.websem.2003.11.006
[18] Ragsdale GL, Project Report SWRI project No. 10.03607, in: The Convergence of Signaling System 7 and Voice-over-IP (2000)
[19] Sakawa M, Fuzzy Sets and Interactive Multiobjective Optimization (1993)
[20] Teitelbaum B, in Proceedings SURA/VIDE 4th Annual Digital Video Workshop pp 1– (2002)
[21] DOI: 10.1016/0165-0114(87)90111-4 · Zbl 0627.90073 · doi:10.1016/0165-0114(87)90111-4
[22] Zadeh L, Fuzzy Sets 8 pp 338– (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[23] DOI: 10.1016/0020-0255(75)90046-8 · Zbl 0404.68074 · doi:10.1016/0020-0255(75)90046-8
[24] DOI: 10.1016/0165-0114(78)90031-3 · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3
[25] DOI: 10.1007/978-94-009-3249-4 · doi:10.1007/978-94-009-3249-4
[26] Zimmermann H, Fuzzy Set Theory and Its Applications,, 4. ed. (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.