Li, Shaoyun; Qian, Weimao; Xu, Huizuo Sharp bounds for Sandor-Yang means in terms of single parameter harmonic and contra-harmonic means. (Chinese. English summary) Zbl 07295229 J. East China Norm. Univ., Nat. Sci. Ed., No. 4, 26-34 (2020). MSC: 26E60 PDF BibTeX XML Cite \textit{S. Li} et al., J. East China Norm. Univ., Nat. Sci. Ed. , No. 4, 26--34 (2020; Zbl 07295229) Full Text: DOI
Shen, Jian-Mei; Yang, Zhen-Hang; Qian, Wei-Mao; Zhang, Wen; Chu, Yu-Ming Sharp rational bounds for the gamma function. (English) Zbl 07284489 Math. Inequal. Appl. 23, No. 3, 843-853 (2020). Reviewer: József Sándor (Cluj-Napoca) MSC: 33B15 26D07 41A60 PDF BibTeX XML Cite \textit{J.-M. Shen} et al., Math. Inequal. Appl. 23, No. 3, 843--853 (2020; Zbl 07284489) Full Text: DOI
Li, Shaoyun; Xu, Huizuo; Qian, Weimao Sharp bounds for the Sándor-Yang means in terms of geometric and quadratic means. (Chinese. English summary) Zbl 07267079 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 1, 61-67 (2020). MSC: 26E60 PDF BibTeX XML Cite \textit{S. Li} et al., J. Sichuan Norm. Univ., Nat. Sci. 43, No. 1, 61--67 (2020; Zbl 07267079) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Zhang, Wen; Chu, Yu-Ming Notes on the complete elliptic integral of the first kind. (English) Zbl 1440.33020 Math. Inequal. Appl. 23, No. 1, 77-93 (2020). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 23, No. 1, 77--93 (2020; Zbl 1440.33020) Full Text: DOI
Qian, Wei-Mao; He, Zai-Yin; Chu, Yu-Ming Approximation for the complete elliptic integral of the first kind. (English) Zbl 1434.33023 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 57, 12 p. (2020). MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 57, 12 p. (2020; Zbl 1434.33023) Full Text: DOI
Yang, Yue-Ying; Qian, Wei-Mao; Xu, Hui-Zuo Sharp bounds for Sándor-Yang means in terms of one-parameter family of bivariate means. (English) Zbl 1435.26040 J. Math. Inequal. 13, No. 4, 1181-1196 (2019). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-Y. Yang} et al., J. Math. Inequal. 13, No. 4, 1181--1196 (2019; Zbl 1435.26040) Full Text: DOI
Qian, Wei-Mao; Zhang, Wen; Chu, Yu-Ming Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means. (English) Zbl 1449.26053 Miskolc Math. Notes 20, No. 2, 1157-1166 (2019). MSC: 26E60 33C10 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., Miskolc Math. Notes 20, No. 2, 1157--1166 (2019; Zbl 1449.26053) Full Text: DOI
Xu, Renxu; Xu, Huizuo; Qian, Weimao Optimal bounds for a quasi-arithmetic mean in terms of other bivariate means. (Chinese. English summary) Zbl 1449.26045 Math. Pract. Theory 49, No. 9, 304-310 (2019). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{R. Xu} et al., Math. Pract. Theory 49, No. 9, 304--310 (2019; Zbl 1449.26045)
He, Xiaohong; Xu, Huizuo; Qian, Weimao Sharp bounds for Toader-type mean in terms of harmonic, geometric, centroidal and contra-harmonic means. (Chinese. English summary) Zbl 1449.26051 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 4, 516-522 (2019). MSC: 26E60 26D15 33E05 PDF BibTeX XML Cite \textit{X. He} et al., J. Sichuan Norm. Univ., Nat. Sci. 42, No. 4, 516--522 (2019; Zbl 1449.26051) Full Text: DOI
Xu, Renxu; Xu, Huizuo; Qian, Weimao On some special combination inequalities for Neuman-Sandor mean. (Chinese. English summary) Zbl 1438.26120 J. Zhejiang Univ., Sci. Ed. 46, No. 3, 295-301, 379 (2019). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{R. Xu} et al., J. Zhejiang Univ., Sci. Ed. 46, No. 3, 295--301, 379 (2019; Zbl 1438.26120) Full Text: DOI
He, Xiao-Hong; Qian, Wei-Mao; Xu, Hui-Zuo; Chu, Yu-Ming Sharp power mean bounds for two Sándor-Yang means. (English) Zbl 1428.26063 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2627-2638 (2019). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 26E60 PDF BibTeX XML Cite \textit{X.-H. He} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2627--2638 (2019; Zbl 1428.26063) Full Text: DOI
Zhang, Fan; Yang, Yueying; Qian, Weimao Sharp bounds for Sandor-Yang means in terms of the convex combination of classical bivariate means. (Chinese. English summary) Zbl 1438.26121 J. Zhejiang Univ., Sci. Ed. 45, No. 6, 665-672 (2018). MSC: 26E60 26D20 PDF BibTeX XML Cite \textit{F. Zhang} et al., J. Zhejiang Univ., Sci. Ed. 45, No. 6, 665--672 (2018; Zbl 1438.26121) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Schur convexity properties for a class of symmetric functions with applications. (English) Zbl 1438.05238 J. Nonlinear Sci. Appl. 11, No. 6, 841-849 (2018). MSC: 05E05 26B25 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, J. Nonlinear Sci. Appl. 11, No. 6, 841--849 (2018; Zbl 1438.05238) Full Text: DOI
Xu, Hui-Zuo; Qian, Wei-Mao Sharp bounds for Sándor-Yang means in terms of quadratic mean. (English) Zbl 1406.26018 J. Math. Inequal. 12, No. 4, 1149-1158 (2018). MSC: 26E60 PDF BibTeX XML Cite \textit{H.-Z. Xu} and \textit{W.-M. Qian}, J. Math. Inequal. 12, No. 4, 1149--1158 (2018; Zbl 1406.26018) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. (English) Zbl 1403.33012 Math. Inequal. Appl. 21, No. 4, 1185-1199 (2018). MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 21, No. 4, 1185--1199 (2018; Zbl 1403.33012) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Wen On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. (English) Zbl 1387.33029 J. Math. Anal. Appl. 462, No. 2, 1714-1726 (2018). MSC: 33E05 26D15 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., J. Math. Anal. Appl. 462, No. 2, 1714--1726 (2018; Zbl 1387.33029) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Wen On approximating the error function. (English) Zbl 1384.33008 Math. Inequal. Appl. 21, No. 2, 469-479 (2018). MSC: 33B20 26D15 26A48 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 21, No. 2, 469--479 (2018; Zbl 1384.33008) Full Text: DOI
Xu, Huizuo; Qian, Weimao Some sharp bounds for Toader-Qi mean of other bivariate means. (Chinese. English summary) Zbl 1399.26088 J. Zhejiang Univ., Sci. Ed. 44, No. 5, 526-530 (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{H. Xu} and \textit{W. Qian}, J. Zhejiang Univ., Sci. Ed. 44, No. 5, 526--530 (2017; Zbl 1399.26088) Full Text: DOI
He, Xiao-Hong; Yang, Yue-Ying; Qian, Wei-Mao Sharp power mean bounds for the second Neuman mean. (English) Zbl 1399.26083 Miskolc Math. Notes 18, No. 2, 801-809 (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{X.-H. He} et al., Miskolc Math. Notes 18, No. 2, 801--809 (2017; Zbl 1399.26083) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. (English) Zbl 1374.26080 J. Inequal. Appl. 2017, Paper No. 274, 10 p. (2017). MSC: 26E60 33E05 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, J. Inequal. Appl. 2017, Paper No. 274, 10 p. (2017; Zbl 1374.26080) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Wen On rational bounds for the gamma function. (English) Zbl 1370.41056 J. Inequal. Appl. 2017, Paper No. 210, 17 p. (2017). MSC: 41A60 33B15 26D07 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., J. Inequal. Appl. 2017, Paper No. 210, 17 p. (2017; Zbl 1370.41056) Full Text: DOI
Yang, Yue-Ying; Qian, Wei-Mao Optimal convex combination bounds of geometric and Neuman means for Toader-type mean. (English) Zbl 1370.26063 J. Inequal. Appl. 2017, Paper No. 201, 10 p. (2017). MSC: 26E60 33E05 PDF BibTeX XML Cite \textit{Y.-Y. Yang} and \textit{W.-M. Qian}, J. Inequal. Appl. 2017, Paper No. 201, 10 p. (2017; Zbl 1370.26063) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Wen Monotonicity rule for the quotient of two functions and its application. (English) Zbl 1360.26008 J. Inequal. Appl. 2017, Paper No. 106, 13 p. (2017). MSC: 26A48 33E05 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., J. Inequal. Appl. 2017, Paper No. 106, 13 p. (2017; Zbl 1360.26008) Full Text: DOI
Qian, Wei-Mao; Zhang, Xiao-Hui; Chu, Yu-Ming Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. (English) Zbl 1358.26025 J. Math. Inequal. 11, No. 1, 121-127 (2017). MSC: 26E60 33C10 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., J. Math. Inequal. 11, No. 1, 121--127 (2017; Zbl 1358.26025) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Best possible bounds for Yang mean using generalized logarithmic mean. (English) Zbl 1400.26070 Math. Probl. Eng. 2016, Article ID 8901258, 7 p. (2016). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, Math. Probl. Eng. 2016, Article ID 8901258, 7 p. (2016; Zbl 1400.26070) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Xiao-Hui Sharp one-parameter mean bounds for Yang mean. (English) Zbl 1400.26071 Math. Probl. Eng. 2016, Article ID 1579468, 5 p. (2016). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., Math. Probl. Eng. 2016, Article ID 1579468, 5 p. (2016; Zbl 1400.26071) Full Text: DOI
Yang, Yueying; Qian, Weimao Two optimal inequalities related to the Sandor-Yang type mean and one-parameter mean. (English) Zbl 1374.26071 Commun. Math. Res. 32, No. 4, 352-358 (2016). MSC: 26D20 26E60 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Qian}, Commun. Math. Res. 32, No. 4, 352--358 (2016; Zbl 1374.26071) Full Text: DOI
Wang, Hua; Qian, Wei-Mao; Chu, Yu-Ming Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral. (English) Zbl 1347.26053 J. Funct. Spaces 2016, Article ID 3698463, 6 p. (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Funct. Spaces 2016, Article ID 3698463, 6 p. (2016; Zbl 1347.26053) Full Text: DOI
Chu, Hong-Hu; Qian, Wei-Mao; Chu, Yu-Ming; Song, Ying-Qing Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means. (English) Zbl 1345.26044 J. Nonlinear Sci. Appl. 9, No. 5, 3424-3432 (2016). MSC: 26E60 33E05 PDF BibTeX XML Cite \textit{H.-H. Chu} et al., J. Nonlinear Sci. Appl. 9, No. 5, 3424--3432 (2016; Zbl 1345.26044) Full Text: DOI Link
Xia, Fang-Li; Qian, Wei-Mao; Chen, Shu-Bo; Chu, Yu-Ming Sharp bounds for Neuman means with applications. (English) Zbl 1334.26074 J. Nonlinear Sci. Appl. 9, No. 5, 2031-2038 (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{F.-L. Xia} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2031--2038 (2016; Zbl 1334.26074) Full Text: DOI Link
Chu, Yu-Ming; Qian, Wei-Mao Sharp Lehmer mean bounds for Neuman means with applications. (English) Zbl 1339.26081 J. Math. Inequal. 10, No. 2, 583-596 (2016). MSC: 26E60 26D05 26D07 PDF BibTeX XML Cite \textit{Y.-M. Chu} and \textit{W.-M. Qian}, J. Math. Inequal. 10, No. 2, 583--596 (2016; Zbl 1339.26081) Full Text: DOI
Zhao, Tie-Hong; Qian, Wei-Mao; Song, Ying-Qing Optimal bounds for two Sándor-type means in terms of power means. (English) Zbl 1336.26055 J. Inequal. Appl. 2016, Paper No. 64, 10 p. (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{T.-H. Zhao} et al., J. Inequal. Appl. 2016, Paper No. 64, 10 p. (2016; Zbl 1336.26055) Full Text: DOI
Song, Ying-Qing; Qian, Wei-Mao; Chu, Yu-Ming Optimal bounds for Neuman mean using arithmetic and centroidal means. (English) Zbl 1339.26084 J. Funct. Spaces 2016, Article ID 5131907, 7 p. (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-Q. Song} et al., J. Funct. Spaces 2016, Article ID 5131907, 7 p. (2016; Zbl 1339.26084) Full Text: DOI
Yang, Yue-Ying; Qian, Wei-Mao; Chu, Yu-Ming Refinements of bounds for Neuman means with applications. (English) Zbl 1331.26055 J. Nonlinear Sci. Appl. 9, No. 4, 1529-1540 (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-Y. Yang} et al., J. Nonlinear Sci. Appl. 9, No. 4, 1529--1540 (2016; Zbl 1331.26055) Full Text: DOI Link
Zhou, Shuang-Shuang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Xiao-Hui Sharp power-type Heronian mean bounds for the Sándor and Yang means. (English) Zbl 1372.26032 J. Inequal. Appl. 2015, Paper No. 159, 10 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{S.-S. Zhou} et al., J. Inequal. Appl. 2015, Paper No. 159, 10 p. (2015; Zbl 1372.26032) Full Text: DOI
Yang, Yue-Ying; Shen, Lin-Chang; Qian, Wei-Mao The optimal convex combination bounds of second contra-harmonic and geometric means for the Seiffert means. (English) Zbl 1354.26055 Pac. J. Appl. Math. 7, No. 3, 209-219 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-Y. Yang} et al., Pac. J. Appl. Math. 7, No. 3, 209--219 (2015; Zbl 1354.26055)
Shen, Lin-Chang; Yang, Yue-Ying; Qian, Wei-Mao Optimal bounds for the identric mean in terms of one-parameter family of bivariate means. (English) Zbl 1354.26054 Pac. J. Appl. Math. 7, No. 3, 201-208 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{L.-C. Shen} et al., Pac. J. Appl. Math. 7, No. 3, 201--208 (2015; Zbl 1354.26054)
Yang, Yueying; Qian, Weimao Optimal inequalities for the Neuman mean in terms of arithmetic and contraharmonic means. (Chinese. English summary) Zbl 1349.26082 Math. Pract. Theory 45, No. 19, 273-279 (2015). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Qian}, Math. Pract. Theory 45, No. 19, 273--279 (2015; Zbl 1349.26082)
Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Xiao-Hui Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means. (English) Zbl 1334.26071 J. Inequal. Appl. 2015, Paper No. 221, 13 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., J. Inequal. Appl. 2015, Paper No. 221, 13 p. (2015; Zbl 1334.26071) Full Text: DOI
Li, Jun-Feng; Qian, Wei-Mao; Chu, Yu-Ming Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. (English) Zbl 1336.26052 J. Inequal. Appl. 2015, Paper No. 277, 9 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{J.-F. Li} et al., J. Inequal. Appl. 2015, Paper No. 277, 9 p. (2015; Zbl 1336.26052) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Refinements of bounds for Neuman means in terms of arithmetic and contraharmonic means. (English) Zbl 1333.26036 J. Math. Inequal. 9, No. 3, 873-881 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, J. Math. Inequal. 9, No. 3, 873--881 (2015; Zbl 1333.26036) Full Text: DOI
Qian, Wei-Mao; Song, Ying-Qing; Zhang, Xiao-Hui; Chu, Yu-Ming Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. (English) Zbl 1326.26055 J. Funct. Spaces 2015, Article ID 452823, 5 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., J. Funct. Spaces 2015, Article ID 452823, 5 p. (2015; Zbl 1326.26055) Full Text: DOI
Qian, Wei-Mao; Shao, Zhi-Hua; Chu, Yu-Ming Sharp inequalities involving Neuman means of the second kind. (English) Zbl 1314.26038 J. Math. Inequal. 9, No. 2, 531-540 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., J. Math. Inequal. 9, No. 2, 531--540 (2015; Zbl 1314.26038) Full Text: DOI Link
Chu, Yu-Ming; Qian, Wei-Mao; Wu, Li-Min; Zhang, Xiao-Hui Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means. (English) Zbl 1309.26030 J. Inequal. Appl. 2015, Paper No. 44, 9 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., J. Inequal. Appl. 2015, Paper No. 44, 9 p. (2015; Zbl 1309.26030) Full Text: DOI
Chu, Yu-Ming; Qian, Wei-Mao Refinements of bounds for Neuman means. (English) Zbl 07022209 Abstr. Appl. Anal. 2014, Article ID 354132, 8 p. (2014). MSC: 26 11 PDF BibTeX XML Cite \textit{Y.-M. Chu} and \textit{W.-M. Qian}, Abstr. Appl. Anal. 2014, Article ID 354132, 8 p. (2014; Zbl 07022209) Full Text: DOI
Shao, Zhi-Hua; Qian, Wei-Mao; Chu, Yu-Ming Sharp bounds for neuman means in terms of one-parameter family of bivariate means. (English) Zbl 1372.26031 J. Inequal. Appl. 2014, Paper No. 468, 11 p. (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{Z.-H. Shao} et al., J. Inequal. Appl. 2014, Paper No. 468, 11 p. (2014; Zbl 1372.26031) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means. (English) Zbl 1372.26030 J. Inequal. Appl. 2014, Paper No. 175, 13 p. (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, J. Inequal. Appl. 2014, Paper No. 175, 13 p. (2014; Zbl 1372.26030) Full Text: DOI
Yang, Lun; Yang, Yue-Ying; Wang, Qing; Qian, Wei-Mao The optimal geometric combination bounds for Neuman means of harmonic, arithmetic and contra-harmonic. (English) Zbl 1326.26057 Pac. J. Appl. Math. 6, No. 4, 283-292 (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{L. Yang} et al., Pac. J. Appl. Math. 6, No. 4, 283--292 (2014; Zbl 1326.26057)
Gong, Wei-Ming; Shao, Zhi-Hua; Qian, Wei-Mao; Chu, Yu-Ming Optimal Lehmer mean bounds for the Neuman-Sándor mean. (English) Zbl 1326.26053 Pac. J. Appl. Math. 6, No. 4, 243-248 (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Gong} et al., Pac. J. Appl. Math. 6, No. 4, 243--248 (2014; Zbl 1326.26053)
Yang, Yue-Ying; Qian, Wei-Mao Bounds for the Neuman means in terms of the centroidal and other bivariate means. (English) Zbl 1316.26037 Pac. J. Appl. Math. 6, No. 3, 217-224 (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{Y.-Y. Yang} and \textit{W.-M. Qian}, Pac. J. Appl. Math. 6, No. 3, 217--224 (2014; Zbl 1316.26037)
Zhang, Fan; Qian, Wei-Mao Sharp bounds for Seiffert mean by harmonic, contraharmonic and harmonic root square means. (English) Zbl 1298.26099 Pac. J. Appl. Math. 6, No. 1, 45-51 (2014). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{W.-M. Qian}, Pac. J. Appl. Math. 6, No. 1, 45--51 (2014; Zbl 1298.26099)
Zhang, Fan; Chu, Yu-Ming; Qian, Wei-Mao Bounds for the arithmetic mean in terms of the Neuman-Sándor and other bivariate means. (English) Zbl 1397.26017 J. Appl. Math. 2013, Article ID 582504, 7 p. (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{F. Zhang} et al., J. Appl. Math. 2013, Article ID 582504, 7 p. (2013; Zbl 1397.26017) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming Sharp bounds for the Neuman-Sándor and second Seiffert means by the second contraharmonic mean. (English) Zbl 1322.26005 Pac. J. Appl. Math. 5, No. 4, 259-266 (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, Pac. J. Appl. Math. 5, No. 4, 259--266 (2013; Zbl 1322.26005)
He, Zai-Yin; Qian, Wei-Mao; Jiang, Yun-Liang; Song, Ying-Qing; Chu, Yu-Ming Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean. (English) Zbl 1272.26030 Abstr. Appl. Anal. 2013, Article ID 903982, 5 p. (2013). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{Z.-Y. He} et al., Abstr. Appl. Anal. 2013, Article ID 903982, 5 p. (2013; Zbl 1272.26030) Full Text: DOI
Qian, Wei-Mao; Chu, Yu-Ming On certain inequalities for Neuman-Sándor mean. (English) Zbl 1276.26060 Abstr. Appl. Anal. 2013, Article ID 790783, 6 p. (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Y.-M. Chu}, Abstr. Appl. Anal. 2013, Article ID 790783, 6 p. (2013; Zbl 1276.26060) Full Text: DOI
Song, Ying-Qing; Qian, Wei-Mao; Jiang, Yun-Liang; Chu, Yu-Ming Optimal lower generalized logarithmic mean bound for the Seiffert mean. (English) Zbl 1267.26028 J. Appl. Math. 2013, Article ID 273653, 5 p. (2013). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{Y.-Q. Song} et al., J. Appl. Math. 2013, Article ID 273653, 5 p. (2013; Zbl 1267.26028) Full Text: DOI
Qian, Wei-Mao; Long, Bo-Yong Sharp bounds by the generalized logarithmic mean for the geometric weighted mean of the geometric and harmonic means. (English) Zbl 1244.26048 J. Appl. Math. 2012, Article ID 480689, 8 p. (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{B.-Y. Long}, J. Appl. Math. 2012, Article ID 480689, 8 p. (2012; Zbl 1244.26048) Full Text: DOI
Qian, Wei-Mao; Shen, Zhong-Hua Inequalities between power means and convex combinations of the harmonic and logarithmic means. (English) Zbl 1235.26014 J. Appl. Math. 2012, Article ID 471096, 14 p. (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{Z.-H. Shen}, J. Appl. Math. 2012, Article ID 471096, 14 p. (2012; Zbl 1235.26014) Full Text: DOI
Qian, Wei-Mao Schur convexity for the ratios of the Hamy and generalized Hamy symmetric functions. (English) Zbl 1275.26048 J. Inequal. Appl. 2011, Paper No. 131, 8 p. (2011). MSC: 26D20 PDF BibTeX XML Cite \textit{W.-M. Qian}, J. Inequal. Appl. 2011, Paper No. 131, 8 p. (2011; Zbl 1275.26048) Full Text: DOI
Qian, Wei-Mao; Zheng, Ning-Guo An optimal double inequality for means. (English) Zbl 1205.26047 J. Inequal. Appl. 2010, Article ID 578310, 11 p. (2010). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{W.-M. Qian} and \textit{N.-G. Zheng}, J. Inequal. Appl. 2010, Article ID 578310, 11 p.. (2010; Zbl 1205.26047) Full Text: DOI EuDML