×

zbMATH — the first resource for mathematics

Embedded smoothed particle hydrodynamics. (English) Zbl 1442.74240
Summary: In this paper, a hybrid method for embedding a meshfree smoothed particle hydrodynamics into mesh-based ALE hydro schemes is presented. The method relies on the embedded mesh framework presented in [the second author et al., Int. J. Numer. Methods Eng. 104, No. 7, 697–720 (2015; Zbl 1354.65195); Comput. Methods Appl. Mech. Eng. 245–246, 273–289 (2012; Zbl 1354.74294)] and utilizes SPH [J. Owen, “ASPH modeling of material damage and failure”, in: Proceedings of the 5th international SPHERIC SPH workshop, Manchester, U.K., June 23–25, 2010. Manchester: University of Manchester. 297–304 (2010)]. in the solid foreground; when an appropriate damage or failure model is used with SPH, it becomes a natural way to model material fracture and cracking in high-explosive driven experiments. We provide various examples which validate the coupling between SPH and the embedded mesh method.
MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76M28 Particle methods and lattice-gas methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Noh, W., A time-dependent, two space dimensional, coupled Eulerian-Lagrangian code, Methods Comput. Phys. (1964)
[2] Peskin, C., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[3] Bessette, G.; Vaughan, C.; Bell, R., Zapotec: A Coupled Euler-Lagrange Program for Modeling Earth PenetrationTech. Rep. SAND2002-3679C (2001), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM 87185
[4] Wardlaw, A.; Luton, J.; Renzi, J.; Kiddy, K.; McKeown, R., The Gemini Coupled HydrocodeTech. Rep. IHTR 2500 (2003), Indian Head Division Naval Surface Warfare Center
[5] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow pas moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2, 363-426 (2001) · Zbl 1047.76097
[6] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W., Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[7] Gerstenberger, A.; Wall, W., An embedded Dirichlet formulation for 3D continua, Internat. J. Numer. Methods Engrg., 82, 537-563 (2010) · Zbl 1188.74056
[8] Dassault Systems, A., ABAQUS User’s Manual - Version 2018 (2018), Dassault Systèmes Simulia Corp.: Dassault Systèmes Simulia Corp. Pawtucket, RI
[9] Corp., L. S.T., LS-DYNA Users’s Manual - Version R9.0 (2019), Livermore Software Technology Corp. (LSTC): Livermore Software Technology Corp. (LSTC) Livermore, CA
[10] Puso, M.; Sanders, J.; Settgast, R.; Liu, B., An embedded mesh method in a multiple material ALE, Comput. Methods Appl. Mech. Engrg., 245, 273-289 (2012) · Zbl 1354.74294
[11] Noble, C., ALE3D: An Arbitrary Lagrangian-Eulerian Multiphysics CodeTech. Rep. LLNL-TR-732040 (2017), Lawrence Livermore National Laboratory: Lawrence Livermore National Laboratory Livermore, CA 94550
[12] Unosson, M.; Olovsson, L.; Simonsson, K., Failure modelling in finite element analyses: element erosion with crack-tip enhancement, Finite Elem. Anal. Des., 42, 283-297 (2006)
[13] Monaghan, J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 8, 1703-1759 (2005)
[14] Attaway, S.; Heinstein, M.; Swegle, J., Coupling of smooth particle hydrodynamics with the finite element method, Nucl. Eng. Des., 150, 199-205 (1994)
[15] Vuyst, T.; Vignjevic, R.; Campbell, J., Coupling between meshless and finite element methods, Int. J. Impact Eng., 31, 1054-1064 (2005)
[16] Whirley, R.; Engelmann, B., DYNA3D: A Nonlinear, Explicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics, User Manual (1993), Lawrence Livermore National Laboratory: Lawrence Livermore National Laboratory Livermore, CA 94550
[17] Johnson, G.; Beissel, S.; Stryk, R., An improved generalized particle algorithm that includes boundaries and interfaces, Internat. J. Numer. Methods Engrg., 53, 875-904 (2002)
[18] Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element-element-free Galerkin method, Comput. Mech., 17, 186-195 (1995) · Zbl 0840.73058
[19] Vuyst, T. D.; Vignjevic, R.; Campbell, J., Coupling between meshless and finite element methods, Int. J. Impact Eng., 31, 8, 1054-1064 (2005)
[20] Zhang, Z.; Long, T.; Chang, J.; Liu, M., A smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with large fluid deformations, Comput. Methods Appl. Mech. Engrg., 356, 261-293 (2019) · Zbl 1441.76097
[21] Puso, M.; Kokko, E.; Settgast, R.; Sanders, J.; Simpkins, B.; Liu, B., An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects, Internat. J. Numer. Methods Engrg., 104, 7, 697-720 (2015) · Zbl 1354.65195
[22] De Groot, A.; Sherwood, R.; Durrenberger, J., ParaDyn: A Parallel Nonlinear Explicit, Three-Dimensional Finite-Element Code for Solid and Structural Mechanics User ManualTech. Rep. SM-678169 (2015), Lawrence Livermore National Laboratory: Lawrence Livermore National Laboratory Livermore, CA 94550
[23] Belytschko, T.; Flanagan, D., A uniform strain hexahedron and quadrilateral hourglass control, Internat. J. Numer. Methods Engrg., 17, 679-706 (1981) · Zbl 0478.73049
[24] Youngs, D., Time-dependent multi-material flow with large fluid distortion, (Numerical Methods for Fluid Dynamics (1982), Academic Press), 273-285 · Zbl 0537.76071
[25] Lucy, L. B., A numerical approac to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[26] Gingold, R.; Monaghan, J., Smoothed particle hydrodynamics - Theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[27] Owen, J.; Villumsen, J.; Shapiro, P.; Martel, H., Adaptive smoothed particle hydrodynamics: Methodology. II, Astrophys. J. Suppl. Ser., 116, 2, 155-209 (1998)
[28] J. Owen, ASPH modeling of material damage and failure, in: Proceedings of the 5th International SPHERIC SPH Workshop, Manchester, U.K., 2010, pp. 297-304.
[29] Hernquist, L.; Katz, N., TREESPH - A Unification of SPH with the hierarchical tree method, Astrophys. J. Suppl. Ser., 70, 419-446 (1989)
[30] Lee, E.; Horning, H.; Kury, J., Adiabatic Expansion of High Explosives Detonation ProductsTech. Rep. TID 4500-UCRL 50422 (1968), Lawrence Livermore National Laboratory: Lawrence Livermore National Laboratory Livermore, CA
[31] Steinberg, D., Equation of State and Strength Properties of Selected Materials (1991), Lawrence Livermore National Laboratory
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.