×

zbMATH — the first resource for mathematics

Von Zeipel’s theorem for a magnetized circular flow around a compact object. (English) Zbl 1317.83015
Summary: We analyze a class of physical properties, forming the content of the so-called von Zeipel theorem, which characterizes stationary, axisymmetric, non-selfgravitating perfect fluids in circular motion in the gravitational field of a compact object. We consider the extension of the theorem to the magnetohydrodynamic regime, under the assumption of an infinitely conductive fluid, both in the Newtonian and in the relativistic framework. When the magnetic field is toroidal, the conditions required by the theorem are equivalent to integrability conditions, as it is the case for purely hydrodynamic flows. When the magnetic field is poloidal, the analysis for the relativistic regime is substantially different with respect to the Newtonian case and additional constraints, in the form of PDEs, must be imposed on the magnetic field in order to guarantee that the angular velocity \(\varOmega\) depends only on the specific angular momentum \(\ell\). In order to deduce such physical constraints, it is crucial to adopt special coordinates, which are adapted to the \(\varOmega =\) const surfaces. The physical significance of these results is briefly discussed.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C10 Equations of motion in general relativity and gravitational theory
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
HARMRAD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowicz, M; Jaroszynski, M; Sikora, M, Relativistic, accreting disks, Astron. Astrophys., 63, 221-224, (1978) · Zbl 0375.53036
[2] Abramowicz, MA, The relativistic von zeipel’s theorem, Acta Astron., 21, 81, (1971)
[3] Abramowicz, MA, Theory of level surfaces inside relativistic: rotating stars. II, Acta Astron., 24, 45, (1974)
[4] Abramowicz, MA; Calvani, M; Nobili, L, Thick accretion disks with super-Eddington luminosities, Astrophys. J., 242, 772-788, (1980)
[5] Abramowicz, MA; Calvani, M; Nobili, L, Runaway instability in accretion disks orbiting black holes, Nature, 302, 597-599, (1983)
[6] Abramowicz, MA; Karas, V; Lanza, A, On the runaway instability of relativistic tori, Astron. Astrophys., 331, 1143-1146, (1998)
[7] Adámek, K; Stuchlík, Z, Magnetized tori in the field of Kerr superspinars, Class. Quantum Gravity, 30, 205007, (2013) · Zbl 1276.83017
[8] Anile, A.M.: Relativistic Fluids and Magneto-fluids. Cambridge University Press, Cambridge (1990) · Zbl 0701.76003
[9] Barkov, MV; Baushev, AN, Accretion of a massive magnetized torus on a rotating black hole, N. Astron., 16, 46-56, (2011)
[10] Bekenstein, JD; Oron, E, New conservation laws in general-relativistic magnetohydrodynamics, Phys. Rev. D, 18, 1809-1819, (1978)
[11] Bekenstein, JD; Oron, E, Interior magnetohydrodynamic structure of a rotating relativistic star, Phys. Rev. D, 19, 2827-2837, (1979)
[12] Beskin, V.S.: MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets. Springer, Berlin (2009) · Zbl 1179.85002
[13] Blaes, OM; Arras, P; Fragile, PC, Oscillation modes of relativistic slender tori, Mon. Not. R. Astron. Soc., 369, 1235-1252, (2006)
[14] Blaes, OM; Hawley, JF, Nonaxisymmetric disk instabilities—a linear and nonlinear synthesis, Astrophys. J., 326, 277-291, (1988)
[15] Camenzind, M, Hydromagnetic flows from rapidly rotating compact objects. II—the relativistic axisymmetric jet equilibrium, Astron. Astrophys., 184, 341-360, (1987) · Zbl 0643.76115
[16] Ciolfi, R, Magnetic field instabiities in neutron stars, Astron. Nachr., 335, 285-290, (2014)
[17] Ciolfi, R; Ferrari, V; Gualtieri, L; Pons, JA, Relativistic models of magnetars: the twisted torus magnetic field configuration, Mon. Not. R. Astron. Soc., 397, 913-924, (2009)
[18] Claret, A, On the deviations of the classical von zeipel’s theorem at the upper layers of rotating stars, Astron. Astrophys., 538, a3, (2012) · Zbl 1260.85008
[19] Fendt, C; Camenzind, M, On collimated stellar jet magnetospheres. II. dynamical structure of collimating wind flows, Astron. Astrophys., 313, 591-604, (1996)
[20] Fishbone, LG; Moncrief, V, Relativistic fluid disks in orbit around Kerr black holes, Astrophys. J., 207, 962-976, (1976)
[21] Fragile, PC; Meier, DL, General relativistic magnetohydrodynamic simulations of the hard state as a magnetically dominated accretion flow, Astrop. J., 693, 771-783, (2009)
[22] Gourgoulhon, E; Markakis, C; Uryū, K; Eriguchi, Y, Magnetohydrodynamics in stationary and axisymmetric spacetimes: a fully covariant approach, Phys. Rev. D, 83, 104007, (2011)
[23] Hamerský, J; Karas, V, Effect of the toroidal magnetic field on the runaway instability of relativistic tori, Astron. Astrophys., 555, a32, (2013)
[24] Ioka, K; Sasaki, M, Grad-Shafranov equation in noncircular stationary axisymmetric spacetimes, Phys. Rev. D, 67, 124026, (2003)
[25] Komissarov, SS, Magnetized tori around Kerr black holes: analytic solutions with a toroidal magnetic field, Mon. Not. R. Astron. Soc., 368, 993-1000, (2006)
[26] Kozlowski, M; Jaroszynski, M; Abramowicz, MA, The analytic theory of fluid disks orbiting the Kerr black hole, Astron. Astrophys., 63, 209-220, (1978) · Zbl 0394.76097
[27] Mason, DP, Analogs in general relativity of ferraro’s law of isorotation, Gen. Relativ. Gravit., 8, 871-876, (1977)
[28] McKinney, JC; Tchekhovskoy, A; Blandford, RD, General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes, Mon. Not. R. Astron. Soc., 423, 3083-3117, (2012)
[29] McKinney, J.C., Tchekhovskoy, A., Sadowski, A., Narayan, R.: Three-Dimensional General Relativistic Radiation Magnetohydrodynamical Simulation of Super-Eddington Accretion, Using a New Code HARMRAD with M1 Closure. ArXiv e-prints (2013)
[30] Montero, PJ; Font, JA; Shibata, M, Influence of self-gravity on the runaway instability of black-hole-torus systems, Phys. Rev. Lett., 104, 191101, (2010)
[31] Montero, PJ; Zanotti, O; Font, JA; Rezzolla, L, Dynamics of magnetized relativistic tori oscillating around black holes, Mon. Not. R. Astron. Soc., 378, 1101-1110, (2007)
[32] Narayan, R., SÄ dowski, A., Penna, R.F., Kulkarni, A.K.: GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc. 426, 3241-3259 (2012). doi:10.1111/j.1365-2966.2012.22002.x
[33] Nitta, SY; Takahashi, M; Tomimatsu, A, Effects of magnetohydrodynamic accretion flows on global structure of a Kerr black-hole magnetosphere, Phys. Rev. D, 44, 2295-2305, (1991)
[34] Okada, R; Fukue, J; Matsumoto, R, A model of astrophysical tori with magnetic fields, Astron. Soc. Jpn. Publ., 41, 133-140, (1989)
[35] Oron, A, Relativistic magnetized star with poloidal and toroidal fields, Phys. Rev. D, 66, 023,006, (2002)
[36] Papaloizou, JCB; Pringle, JE, The dynamical stability of differentially rotating discs with constant specific angular momentum, Mon. Not. R. Astron. Soc., 208, 721-750, (1984) · Zbl 0562.76106
[37] Pugliese, D; Montani, G, Squeezing of toroidal accretion disks, Europhys. Lett., 101, 19001, (2013)
[38] Pugliese, D., Montani, G., Bernardini, M.G.: On the polish doughnut accretion disc via the effective potential approach. Mon. Not. R. Astron. Soc. (2012). doi:10.1093/mnras/sts051
[39] Rezzolla, L; Baiotti, L; Giacomazzo, B; Link, D; Font, JA, Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines, Class. Quantum Gravity, 27, 114,105, (2010) · Zbl 1190.83066
[40] Rezzolla, L; Yoshida, S; Zanotti, O, Oscillations of vertically integrated relativistic tori—I. axisymmetric modes in a Schwarzschild space-time, Mon. Not. R. Astron. Soc., 344, 978-992, (2003)
[41] Sa̧dowski, A; Narayan, R; McKinney, JC; Tchekhovskoy, A, Numerical simulations of super-critical black hole accretion flows in general relativity, Mon. Not. R. Astron. Soc., 439, 503-520, (2014)
[42] Slaný, P; Kovář, J; Stuchlík, Z; Karas, V, Charged tori in spherical gravitational and dipolar magnetic fields, Astrophys. J. Suppl., 205, 3, (2013)
[43] Tassoul, J.L.: Theory of Rotating Stars. Princeton University Press, Princeton (1978)
[44] Villiers, JPD; Hawley, JF, Global general relativistic magnetohydrodynamic simulations of accretion tori, Astrophys. J., 592, 1060, (2003)
[45] Zeipel, H, The radiative equilibrium of a rotating system of gaseous masses, Mon. Not. R. Soc., 84, 665-683, (1924)
[46] Zanotti, O, Model for an optically thick torus in local thermodynamic equilibrium around a black hole, Astron. Astrophys., 563, a17, (2014)
[47] Zanotti, O; Rezzolla, L; Font, JA, Quasi-periodic accretion and gravitational waves from oscillating “toroidal neutron stars” around a Schwarzschild black hole, Mon. Not. R. Soc., 341, 832, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.