×

Monte Carlo modeling of spin FETs controlled by spin–orbit interaction. (English) Zbl 1055.82520

Summary: A method for Monte Carlo simulation of 2D spin-polarized electron transport in III–V semiconductor heterojunction (FETs) is presented. In the simulation, the dynamics of the electrons in coordinate and momentum space is treated semiclassically. The density matrix description of the spin is incorporated in the Monte Carlo method to account for the spin polarization dynamics. The spin–orbit interaction in the spin FET leads to both coherent evolution and dephasing of the electron spin polarization. Spin-independent scattering mechanisms, including optical phonons, acoustic phonons and ionized impurities, are implemented in the simulation. The electric field is determined self-consistently from the charge distribution resulting from the electron motion. Description of the Monte Carlo scheme is given and simulation results are reported for temperatures in the range 77–300 K.

MSC:

82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
82D37 Statistical mechanics of semiconductors
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] K. Hess, Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publishers, Boston, 1991.; K. Hess, Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publishers, Boston, 1991. · Zbl 0753.00014
[2] C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, Chapman & Hall, New York, 1993.; C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, Chapman & Hall, New York, 1993. · Zbl 0483.65068
[3] Jacoboni, C.; Reggiani, L., The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys., 55, 645-705 (1983)
[4] Das Sarma, S.; Fabian, J.; Hu, X.; Zutic, I., Theoretical perspectives on spintronics and spin-polarized transport, IEEE Trans. Magn., 36, 2821-2826 (2000)
[5] Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M., Spintronics: a spin-based electronics. Vision for the future, Science, 294, 1488-1495 (2001)
[6] Das Sarma, S., Spintronics, Am. Sci., 89, 516-523 (2001)
[7] Awschalom, D. D.; Flatte, M. E.; Samarth, N., Spintronics, Sci. Am., 286, 66-73 (2002)
[8] Datta, S.; Das, B., Electronic analog of the electro-optic modulator, Appl. Phys. Lett., 56, 665-667 (1990)
[9] Kane, B. E.; Pfeiffer, L. N.; West, K. W., Evidence for an electric-field-induced phase transition in a spin-polarized two-dimensional electron gas, Phys. Rev. B, 46, 7264-7267 (1992)
[10] Johnson, M., Bipolar spin switch, Science, 260, 320-323 (1993)
[11] Flatte, M. E.; Vignale, G., Unipolar spin diodes and transistors, Appl. Phys. Lett., 78, 1273-1275 (2001)
[12] Zutic, I.; Fabian, J.; Das Sarma, S., Proposal for a spin-polarized solar battery, Appl. Phys. Lett., 79, 1558-1560 (2001)
[13] Ciuti, C.; McGuire, J. P.; Sham, L. J., Spin dependent properties of a two dimensional electron gas with ferromagnetic gates, Appl. Phys. Lett., 81, 4781-4783 (2002)
[14] Koga, T.; Takayanagi, J.andH., Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode, Phys. Rev. Lett., 88, 1-4 (2002), article 126601
[15] Wang, X. F.; Vasilopoulos, P.; Peeters, F. M., Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides, Phys. Rev. B, 65, 1-10 (2002), article 165217
[16] Mani, R. G.; Johnson, W. B.; Narayanamurti, V.; Privman, V.; Zhang, Y.-H., Nuclear spin based memory and logic in quantum Hall semiconductor nanostructures for quantum computing applications, Physica E, 12, 152-156 (2002)
[17] Schliemann, J.; Egues, J. C.; Loss, D., Nonballistic spin-field-effect transistor, Phys. Rev. Lett., 90, 1-4 (2003), article 146801
[18] Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W., Injection and detection of a spin-polarized current in a light-emitting diode, Nature, 402, 787-790 (1999)
[19] Hanbicki, A. T.; Jonker, B. T.; Itskos, G.; Kioseoglou, G.; Petrou, A., Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor, Appl. Phys. Lett., 80, 1240-1242 (2002)
[20] Motsnyi, A. F.; De Boeck, J.; Das, J.; Van Roy, W.; Boughs, G., Electrical spin injection in a ferromagnetic/tunnel barrier/semiconductor heterostructure, Appl. Phys. Lett., 81, 265-267 (2002)
[21] Mattana, R.; George, J.-M.; Jaffres, H.; Nguyen Van Dau, F.; Fert, A., Electrical detection of spin accumulation in a p-type GaAs quantum well, Phys. Rev. Lett., 90, 1-4 (2003), article 166601
[22] Ohno, Y.; Terauchi, R.; Adachi, T.; Matsukura, F.; Ohno, H., Spin relaxation in GaAs(110) quantum wells, Phys. Rev. Lett., 83, 4196-4199 (1999)
[23] D’yakonov, M. I.; Perel’, V. I., Spin orientation of electronics associated with the interband absorption of light in semiconductors, Soviet Phys. JETP, 33, 1053-1059 (1971)
[24] Mireles, F.; Kirczenow, G., Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires, Phys. Rev. B, 64, 1-13 (2001), article 024426
[25] Schapers, Th.; Nitta, J.; Heersche, H. B.; Takayanagi, H., Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures, Physica E, 13, 564-567 (2002)
[26] Fabian, J.; Zutic, I.; Das Sarma, S., Theory of spin-polarized bipolar transport in magnetic p-n junctions, Phys. Rev. B, 66, 1-24 (2002), article 165301
[27] Schmidt, G.; Molenkamp, L. W., Spin injection into semiconductors, physics and experiments, Semicond. Sci. Tech., 17, 310-321 (2002)
[28] Yu, Z. G.; Flatte, M. E., Spin diffusion and injection in semiconductor structures: electric field effects, Phys. Rev. B, 66, 1-14 (2002), article 235302
[29] Inoue, J.; Bauer, G. E.W.; Molenkamp, L. W., Diffusive transport and spin accumulation in a Rashba two-dimesional electron gas, Phys. Rev. B, 67, 1-4 (2003), article 033104
[30] G. Schmidt, C. Gould, P. Grabs, A.M. Lunde, G. Richter, A. Slobodskyy, L.W. Molenkamp, Spin injection in the non-linear regime: band bending effects, preprint cond-mat/0206347 at http://www.arxiv.org; G. Schmidt, C. Gould, P. Grabs, A.M. Lunde, G. Richter, A. Slobodskyy, L.W. Molenkamp, Spin injection in the non-linear regime: band bending effects, preprint cond-mat/0206347 at http://www.arxiv.org
[31] Valet, T.; Fert, A., Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B, 48, 7099-7113 (1993)
[32] Weng, M. Q.; Wu, M. W., Kinetic theory of spin transport in n-type semiconductor quantum wells, J. Appl. Phys., 93, 410-420 (2003)
[33] Qi, Y.; Zhang, S., Spin diffusion at finite electric and magnetic fields, Phys. Rev. B, 67, 1-4 (2003), article 052407
[34] Bournel, A.; Delmouly, V.; Dollfus, P.; Tremblay, G.; Hesto, P., Theoretical and experimental considerations on spin field effect transistor, Physica E, 10, 86-90 (2001)
[35] Kiselev, A. A.; Kim, K. W., Progressive suppression of spin relaxation in two-dimensional channels of finite width, Phys. Rev. B, 61, 13115-13120 (2000)
[36] Pramanik, S.; Bandyopadhyay, S.; Cahay, M., Spin dephasing in quantum wires, Phys. Rev. B, 67, 1-10 (2003), article 075313
[37] Saikin, S.; Shen, M.; Cheng, M.-C.; Privman, V., Semiclassical Monte Carlo model for in-plane transport of spin-polarized electrons in III-V heterostructures, J. Appl. Phys., 94, 1769-1775 (2003)
[38] Sato, Y.; Gozu, S.; Kita, T.; Yamada, S., Study for realization of spin-polarized field effect transistor in \(In_{0.75}Ga_{0.25}As/In_{0.75}Al_{0.25}As\) heterostructure, Physica E, 12, 399-402 (2002)
[39] Sanada, H.; Arata, I.; Ohno, Y.; Chen, Z.; Kayanuma, K.; Oka, Y.; Matsukura, F.; Ohno, H., Relaxation of photoinjected spins during drift transport in GaAs, Appl. Phys. Lett., 81, 2788-2790 (2002)
[40] Britton, R. S.; Grevatt, T.; Malinowski, A.; Harley, R. T.; Perozzo, P.; Cameron, A. R.; Miller, A., Room temperature spin relaxation in GaAs/AlGaAs multiple quantum wells, Appl. Phys. Lett., 73, 2140-2142 (1998)
[41] V. Mitin, V. Kochelap, M.A. Stroscio, Quantum Heterostructures. Microelectronics and Optoelectronics, Cambridge University Press, Cambridge, 1999.; V. Mitin, V. Kochelap, M.A. Stroscio, Quantum Heterostructures. Microelectronics and Optoelectronics, Cambridge University Press, Cambridge, 1999.
[42] Fishman, G.; Lampel, G., Spin relaxation of photoelectrons in p-type gallium arsenide, Phys. Rev. B, 16, 820-831 (1977)
[43] K. Blum, Density Matrix Theory and Applications, Plenum, New York, 1996.; K. Blum, Density Matrix Theory and Applications, Plenum, New York, 1996. · Zbl 1234.81009
[44] Dresselhaus, G., Spin-orbit coupling effects in zinc blende structures, Phys. Rev., 100, 580-586 (1955) · Zbl 0065.23703
[45] Dyakonov, M. I.; Kachorovskii, V. Yu., Spin relaxation of two-dimensional electrons in noncentrosymmertic semiconductors, Soviet Phys. Semicond., 20, 110-112 (1986)
[46] Bychkov, Yu.; Rashba, E. I., Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C, 17, 6039-6045 (1984)
[47] Elliott, R. J., Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors, Phys. Rev., 96, 266-279 (1954) · Zbl 0056.45205
[48] Cheng, M.; Kunhardt, E. E., Electron energy distribution, transport parameters, and rate coefficients in GaAs, J. Appl. Phys., 63, 2322-2330 (1988)
[49] K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993.; K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993.
[50] L. Reggiani, Hot Electron Transport in Semiconductors, Springer-Verlag, New York, 1985.; L. Reggiani, Hot Electron Transport in Semiconductors, Springer-Verlag, New York, 1985.
[51] Nitta, J.; Akazaki, T.; Takayanagi, H., Gate control of spin-orbit interaction in an inverted \(In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As\) heterostructure, Phys. Rev. Lett., 78, 1335-1338 (1997)
[52] Cardona, M.; Christensen, N. E.; Fasol, G., Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors, Phys. Rev. B, 38, 1806-1827 (1988)
[53] M.V. Fischetti, S.E. Laux, Damocles Theoretical Manual, IBM Corporation, Yorktown Heights, April 1995.; M.V. Fischetti, S.E. Laux, Damocles Theoretical Manual, IBM Corporation, Yorktown Heights, April 1995.
[54] Barry, E. A.; Kiselev, A. A.; Kim, K. W., Electron spin relaxation under drift in GaAs, Appl. Phys. Lett., 82, 3686-3688 (2003)
[55] Cheng, M.-C.; Guo, L.; Fithen, R.; Luo, Y., A study of nonparabolic hydrodynamic modeling of a sub-micrometer \(n^+\)-n-\(n^+\) device, J. Phys. D: Appl. Phys., 30, 2343-2353 (1997)
[56] V.F. Gantmakher, Y.B. Levinson, Carrier Scattering in Metals and Semiconductors, Elsevier, New York, 1987.; V.F. Gantmakher, Y.B. Levinson, Carrier Scattering in Metals and Semiconductors, Elsevier, New York, 1987.
[57] M.M. Glazov, E.L. Ivchenko, D’yakonov-Perel’ spin relaxation under electron-electron collisions in QWs, preprint cond-mat/0301519 at http://www.arxiv.org; M.M. Glazov, E.L. Ivchenko, D’yakonov-Perel’ spin relaxation under electron-electron collisions in QWs, preprint cond-mat/0301519 at http://www.arxiv.org
[58] M. Cahay, S. Bandyopadhyay, Conductance modulation of spin interferometers, Phys. Rev. B 68 (2003).; M. Cahay, S. Bandyopadhyay, Conductance modulation of spin interferometers, Phys. Rev. B 68 (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.