×

The optimal shape of a dendrite sealed at both ends. (English) Zbl 1188.49045

Summary: We are interested in the geometric structures which appear in nature. We consider the example of a nerve fiber and we suppose that shapes in nature arise in order to optimize some criterion. Then, we try to solve the problem consisting in searching the shape of a nerve fiber for a given criterion. The first considered criterion represents the attenuation in space of the electrical message troughout the fiber and seems to be relevant. Our second criterion represents the attenuation in time of the electrical message and doesn’t provide a realistic shape. We prove that the associated optimization problem has no solution.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35P05 General topics in linear spectral theory for PDEs
49R05 Variational methods for eigenvalues of operators
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bandle, C., Extremal problems for eigenvalues of the Sturm-Liouville type, (General Inequalities, 5. General Inequalities, 5, Oberwolfach, 1986. General Inequalities, 5. General Inequalities, 5, Oberwolfach, 1986, Internat. Schriftenreibe Numer. Math., vol. 80 (1987), Birkhäuser: Birkhäuser Basel) · Zbl 0638.34019
[2] Cox, S. J.; Lipton, R., Extremal eigenvalue problems for two-phase conductors, Arch. Ration. Mech. Anal., 136, 101-117 (1996) · Zbl 0914.49011
[3] Cox, S. J.; Raol, J. H., Recovering the passive properties of tapered dendrites from single and dual potential recordings, Math. Biosci., 190, 1, 9-37 (2004) · Zbl 1049.92007
[4] Dautray, R.; Lions, J. L., Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques (1988), Masson
[5] Egorov, Y.; Kondratiev, V., On Spectral Theory of Elliptic Operators (1996), Birkhäuser · Zbl 0855.35001
[6] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1977), Springer-Verlag: Springer-Verlag New York, Heidelberg, 327-340
[7] Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators, Front. Math. (2006), Birkhäuser · Zbl 1109.35081
[8] Henrot, A.; Privat, Y., Shape minimisation of dendritic attenuation, Appl. Math. Optim., 57, 1, 1-16 (February 2008)
[9] Henrot, A.; Pierre, M., Variation et Optimisation de Formes, Math. Appl. (2005), Springer-Verlag · Zbl 1098.49001
[10] Tosio Kato, X., Perturbation Theory for Linear Operators, Classics Math. (1995), Springer-Verlag: Springer-Verlag Berlin, reprint of the 1980 edition · Zbl 0836.47009
[11] Mauroy, B.; Filoche, M.; Weibel, E. R.; Sapoval, B., An optimal bronchial tree may be dangerous, Nature, 427, 633-636 (2004)
[12] Mauroy, B.; Filoche, M.; Andrade, J. S.; Sapoval, B., Interplay between geometry and flow distribution in an airway tree, Phys. Rev. Lett., 90, 148101-1-148101-4 (2003)
[13] Rall, W., An historical perspective on modeling dendrites, (Stuart, G.; Spruston, N.; Häusser, M., Dendrites (2008), Oxford University Press), Chapter 12
[14] Rall, W.; Agmon-Snir, H., Cable theory for dendritic neurons, (Koch, C.; Segev, I., Methods in Neuronal Modeling. From Ions to Networks (1998), MIT Press: MIT Press Cambridge, MA), 27-92, Chapter 2
[15] Rall, W., Theory of physiological properties of dendrites, Ann. New York Acad. Sci., 96, 1071 (1962)
[16] Sokolowski, J.; Zolesio, J. P., Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Ser. Comput. Math., vol. 10 (1992), Springer: Springer Berlin · Zbl 0761.73003
[17] Walter, J., Regular eigenvalue problem with eigenvalue parameter in the boundary condition, Math. Z., 133, 301-312 (1973) · Zbl 0246.47058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.