×

Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. (English) Zbl 1411.92146

Summary: The therapeutic control of a solid tumour depends critically on the responses of the individual cells that constitute the entire tumour mass. A particular cell’s spatial location within the tumour and intracellular interactions, including the evolution of the cell-cycle within each cell, has an impact on their decision to grow and divide. They are also influenced by external signals from other cells as well as oxygen and nutrient concentrations. Hence, it is important to take these into account when modelling tumour growth and the response to various treatment regimes (‘cell-kill therapies’), including chemotherapy.
In order to address this multiscale nature of solid tumour growth and its response to treatment, we propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the level of cells, linking individual cell behaviour with the macroscopic behaviour of cell organisation and the microenvironment. The individual tumour cells are modelled by using a cellular automaton (CA) approach, where each cell has its own internal cell-cycle, modelled using a system of ODEs. The internal cell-cycle dynamics determine the growth strategy in the CA model, making it more predictive and biologically relevant. It also helps to classify the cells according to their cell-cycle states and to analyse the effect of various cell-cycle dependent cytotoxic drugs. Moreover, we have incorporated the evolution of oxygen dynamics within this hybrid model in order to study the effects of the microenvironment in cell-cycle regulation and tumour treatments. An important factor from the treatment point of view is that the low concentration of oxygen can result in a hypoxia-induced quiescence (G0/G1 arrest) of the cancer cells, making them resistant to key cytotoxic drugs. Using this multiscale model, we investigate the impact of oxygen heterogeneity on the spatio-temporal patterning of the cell distribution and their cell-cycle status. We demonstrate that oxygen transport limitations result in significant heterogeneity in HIF-1 \(\alpha\) signalling and cell-cycle status, and when these are combined with drug transport limitations, the efficacy of the therapy is significantly impaired.

MSC:

92C50 Medical applications (general)
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C37 Cell biology
68Q80 Cellular automata (computational aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agur, Z.; Hassin, R.; Levy, S., Optimizing chemotherapy scheduling using local search heuristics, Oper. Res., 54, September-October (5), 829-846 (2006) · Zbl 1167.90660
[2] Alarcon, T.; Byrne, H. M.; Maini, P. K., A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225, November, 257-274 (2003) · Zbl 1464.92060
[3] Alarcon, T.; Byrne, H. M.; Maini, P. K., A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells, J. Theor. Biol., 229, August, 395-411 (2004) · Zbl 1440.92011
[4] Alarcon, T.; Byrne, H. M.; Maini, P. K., A multiple scale model for tumour growth, Multiscale Model. Sim., 3, 440-475 (2005) · Zbl 1107.92019
[5] Altinok, A.; Levi, F.; Goldbeter, A., A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Adv. Drug Deliv. Rev., 59, August, 1036-1053 (2007)
[6] Anderson, A. R.; Chaplain, M. A., Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60, September, 857-899 (1998) · Zbl 0923.92011
[7] Anderson, A. R.; Rejniak, K. A.; Gerlee, P.; Quaranta, V., Microenvironment driven invasion: a multiscale multimodel investigation, J. Math. Biol., 58, April, 579-624 (2009) · Zbl 1311.92079
[8] Bailar, J. C.; Gornik, H. L., Cancer undefeated, N. Engl. J. Med., 336, May, 1569-1574 (1997)
[9] Bekkal Brikci, F.; Clairambault, J.; Ribba, B.; Perthame, B., An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol., 57, July, 91-110 (2008) · Zbl 1148.92014
[10] Byrne, H. M., Dissecting cancer through mathematics: from the cell to the animal model, Nat. Rev. Cancer, 10, March, 221-230 (2010)
[11] Chaplain, M.; Anderson, A., Mathematical modelling of tumour-induced angiogenesis: network growth and structure, Cancer Treat. Res., 117, 51-75 (2004)
[12] Clairambault, J., A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation, IEEE Eng. Med. Biol. Mag., 27, 20-24 (2008)
[13] Dasu, A.; Toma-Dasu, I.; Karlsson, M., Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia, Phys. Med. Biol., 48, September, 2829-2842 (2003)
[14] Deep, G.; Agarwal, R., New combination therapies with cell-cycle agents, Curr. Opin. Investig. Drugs, 9, June, 591-604 (2008)
[15] Deisboeck, T. S.; Wang, Z.; Macklin, P.; Cristini, V., Multiscale cancer modeling, Annu. Rev. Biomed. Eng., 13, August, 127-155 (2011)
[16] Dormann, S.; Deutsch, A., Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In Silico Biol. (Gedrukt), 2, 393-406 (2002)
[17] Douglas, R. M.; Haddad, G. G., Genetic models in applied physiology: invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest, J. Appl. Physiol., 94, May, 2068-2083 (2003)
[18] Frieboes, H. B.; Edgerton, M. E.; Fruehauf, J. P.; Rose, F. R.; Worrall, L. K.; Gatenby, R. A.; Ferrari, M.; Cristini, V., Prediction of drug response in breast cancer using integrative experimental/computational modeling, Cancer Res., 69, May, 4484-4492 (2009)
[19] Gardner, L. B.; Li, Q.; Park, M. S.; Flanagan, W. M.; Semenza, G. L.; Dang, C. V., Hypoxia inhibits G1/S transition through regulation of p27 expression, J. Biol. Chem., 276, March, 7919-7926 (2001)
[20] Garrett, M. D.; Fattaey, A., CDK inhibition and cancer therapy, Curr. Opin. Genet. Dev., 9, February, 104-111 (1999)
[21] Gatenby, R. A., A change of strategy in the war on cancer, Nature, 459, May, 508-509 (2009)
[22] Gatenby, R. A.; Silva, A. S.; Gillies, R. J.; Frieden, B. R., Adaptive therapy, Cancer Res., 69, June, 4894-4903 (2009)
[23] Gelderblom, H.; Baker, S. D.; Zhao, M.; Verweij, J.; Sparreboom, A., Distribution of paclitaxel in plasma and cerebrospinal fluid, Anticancer Drugs, 14, June, 365-368 (2003)
[24] Gerard, C.; Goldbeter, A., Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proc. Natl. Acad. Sci. U.S.A., 106, December, 21643-21648 (2009)
[25] Gerlee, P.; Anderson, A. R., An evolutionary hybrid cellular automaton model of solid tumour growth, J. Theor. Biol., 246, June, 583-603 (2007) · Zbl 1451.92093
[26] Goda, N.; Dozier, S. J.; Johnson, R. S., HIF-1 in cell cycle regulation, apoptosis, and tumor progression, Antioxid. Redox Signal., 5, August, 467-473 (2003)
[27] Goda, N.; Ryan, H. E.; Khadivi, B.; McNulty, W.; Rickert, R. C.; Johnson, R. S., Hypoxia-inducible factor \(1 \alpha\) is essential for cell cycle arrest during hypoxia, Mol. Cell. Biol., 23, January, 359-369 (2003)
[28] Goldbeter, A., A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Natl. Acad. Sci. U.S.A., 88, October, 9107-9111 (1991)
[29] Gordon, K., 2006. Mathematical Modelling of Cell-cycle-dependent Chemotherapy Drugs-implications for Cancer Treatment. Ph.D. Thesis, University of Dundee, Dundee.; Gordon, K., 2006. Mathematical Modelling of Cell-cycle-dependent Chemotherapy Drugs-implications for Cancer Treatment. Ph.D. Thesis, University of Dundee, Dundee.
[30] Hlatky, L.; Alpen, E. L., Two-dimensional diffusion limited system for cell growth, Cell Tissue Kinet., 18, November, 597-611 (1985)
[31] Jain, R. K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307, January, 58-62 (2005)
[32] Jain, R. K.; Tong, R. T.; Munn, L. L., Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model, Cancer Res., 67, March, 2729-2735 (2007)
[33] Kansal, A. R.; Torquato, S.; Harsh, G. R.; Chiocca, E. A.; Deisboeck, T. S., Cellular automaton of idealized brain tumor growth dynamics, BioSystems, 55, February, 119-127 (2000)
[34] Konerding, M. A.; Malkusch, W.; Klapthor, B.; van Ackern, C.; Fait, E.; Hill, S. A.; Parkins, C.; Chaplin, D. J.; Presta, M.; Denekamp, J., Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts, Br. J. Cancer, 80, May, 724-732 (1999)
[35] Kraynak, M. A., Pharmaceutical aspects of docetaxel, Am. J. Health Syst. Pharm., 54, December, 7-10 (1997)
[36] Levin, V. A.; Patlak, C. S.; Landahl, H. D., Heuristic modeling of drug delivery to malignant brain tumors, J. Pharmacokinet. Biopharm., 8, June, 257-296 (1980)
[37] Lowengrub, J. S.; Frieboes, H. B.; Jin, F.; Chuang, Y. L.; Li, X.; Macklin, P.; Wise, S. M.; Cristini, V., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, R1-R9 (2010) · Zbl 1181.92046
[38] Macklin, P.; Edgerton, M. E.; Thompson, A. M.; Cristini, V., Patient-calibrated agent-based modelling of ductal carcinoma in situ (dcis): from microscopic measurements to macroscopic predictions of clinical progression, J. Theor. Biol., 301, 122-140 (2012) · Zbl 1397.92346
[39] Masson, E.; Zamboni, W. C., Pharmacokinetic optimisation of cancer chemotherapy. Effect on outcomes, Clin. Pharmacokinet., 32, April, 324-343 (1997)
[40] Matzavinos, A.; Kao, C. Y.; Green, J. E.; Sutradhar, A.; Miller, M.; Friedman, A., Modeling oxygen transport in surgical tissue transfer, Proc. Natl. Acad. Sci. U.S.A., 106, July, 12091-12096 (2009)
[41] Moreira, J.; Deutsch, A., Cellular automaton models of tumor development: a critical review, Adv. Complex Syst., 5, 02, 247-267 (2002) · Zbl 1020.92016
[42] Novak, B.; Tyson, J. J., Modelling the controls of the eukaryotic cell cycle, Biochem. Soc. Trans., 31, December, 1526-1529 (2003)
[43] Novak, B.; Tyson, J. J., A model for restriction point control of the mammalian cell cycle, J. Theor. Biol., 230, October, 563-579 (2004) · Zbl 1447.92048
[44] Owen, M. R.; Byrne, H. M.; Lewis, C. E., Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites, J. Theor. Biol., 226, February, 377-391 (2004) · Zbl 1439.92111
[45] Owen, M. R.; Alarcon, T.; Maini, P. K.; Byrne, H. M., Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58, April, 689-721 (2009) · Zbl 1311.92034
[46] Pasquier, E.; Kavallaris, M.; Andre, N., Metronomic chemotherapy: new rationale for new directions, Nat. Rev. Clin. Oncol., 7, August, 455-465 (2010)
[47] Patel, A. A.; Gawlinski, E. T.; Lemieux, S. K.; Gatenby, R. A., A cellular automaton model of early tumor growth and invasion, J. Theor. Biol., 213, December, 315-331 (2001)
[48] Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcon, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R., Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions, PLoS ONE, 6, e14790 (2011)
[49] Perry, M. C., The Chemotherapy Source Book (1996), Williams and Wilkins: Williams and Wilkins Baltimore
[50] Pouyssegur, J.; Dayan, F.; Mazure, N. M., Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, 441, May, 437-443 (2006)
[51] Powathil, G.; Kohandel, M.; Milosevic, M.; Sivaloganathan, S., Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies, Comput. Math. Methods Med., 2012, 410602 (2012) · Zbl 1233.92037
[52] Reece, P. A.; Stafford, I.; Abbott, R. L.; Anderson, C.; Denham, J.; Freeman, S.; Morris, R. G.; Gill, P. G.; Olweny, C. L., Two-versus 24-hour infusion of cisplatin: pharmacokinetic considerations, J. Clin. Oncol., 7, February, 270-275 (1989)
[53] Ribba, B.T., Alarcon, T., Marron, K., Maini, P.K., Agur, Z., 2004. The use of hybrid cellular automaton models for improving cancer therapy. In: Lecture Notes in Computer Science, vol. 3305, pp. 444-453.; Ribba, B.T., Alarcon, T., Marron, K., Maini, P.K., Agur, Z., 2004. The use of hybrid cellular automaton models for improving cancer therapy. In: Lecture Notes in Computer Science, vol. 3305, pp. 444-453. · Zbl 1116.92314
[54] Ribba, B.; Colin, T.; Schnell, S., A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theor. Biol. Med. Model., 3, 7 (2006)
[55] Ribba, B.; You, B.; Tod, M.; Girard, P.; Tranchand, B.; Trillet-Lenoir, V.; Freyer, G., Chemotherapy may be delivered based on an integrated view of tumour dynamics, IET Syst. Biol., 3, 180-190 (2009)
[56] Rijken, P. F.; Bernsen, H. J.; Peters, J. P.; Hodgkiss, R. J.; Raleigh, J. A.; van der Kogel, A. J., Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi-parameter analysis, Int. J. Radiat. Oncol. Biol. Phys., 48, September, 571-582 (2000)
[57] Schwartz, G. K.; Shah, M. A., Targeting the cell cycle: a new approach to cancer therapy, J. Clin. Oncol., 23, December, 9408-9421 (2005)
[58] Serini, G.; Ambrosi, D.; Giraudo, E.; Gamba, A.; Preziosi, L.; Bussolino, F., Modeling the early stages of vascular network assembly, EMBO J., 22, April, 1771-1779 (2003)
[59] Shah, M. A.; Schwartz, G. K., Cell cycle-mediated drug resistance: an emerging concept in cancer therapy, Clin. Cancer Res., 7, August, 2168-2181 (2001)
[60] Shochat, E.; Hart, D.; Agur, Z., Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols, Math. Models Methods Appl. Sci., 9, June (4), 599-615 (1999) · Zbl 0933.92022
[61] Silva, A. S.; Gatenby, R. A., A theoretical quantitative model for evolution of cancer chemotherapy resistance, Biol. Direct, 5, 25 (2010)
[62] Sinek, J. P.; Sanga, S.; Zheng, X.; Frieboes, H. B.; Ferrari, M.; Cristini, V., Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation, J. Math. Biol., 58, April, 485-510 (2009) · Zbl 1311.92096
[63] Stamper, I. J.; Owen, M. R.; Maini, P. K.; Byrne, H. M., Oscillatory dynamics in a model of vascular tumour growth—implications for chemotherapy, Biol. Direct, 5, 27 (2010)
[64] Turner, S.; Sherratt, J. A., Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model, J. Theor. Biol., 216, May, 85-100 (2002)
[65] Tyson, J. J.; Novak, B., Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions, J. Theor. Biol., 210, May, 249-263 (2001)
[66] Vaupel, P., Oxygenation of human tumors, Strahlenther. Onkol., 166, June, 377-386 (1990)
[67] Vaupel, P.; Hockel, M., Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance, Int. J. Oncol., 17, November, 869-879 (2000)
[68] Vita, M.; Abdel-Rehim, M.; Olofsson, S.; Hassan, Z.; Meurling, L.; Siden, A.; Siden, M.; Pettersson, T.; Hassan, M., Tissue distribution, pharmacokinetics and identification of roscovitine metabolites in rat, Eur. J. Pharm. Sci., 25, May, 91-103 (2005)
[69] Weinberg, R., The Biology of Cancer (2006), Garland Science, Taylor and Francis Group
[70] Zalatnai, A., Review: potential role of cell cycle synchronizing agents in combination treatment modalities of malignant tumors, In Vivo, 19, 85-91 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.