×

Shallow water entry: modeling and experiments. (English) Zbl 1372.35091

Summary: As marine vessels expand their range of operations and their planing speeds increase, understanding the physics of shallow water entry becomes of paramount importance. High-speed impact on the surface is responsible for impulsive hydrodynamic loading, spatiotemporal evolution of which is controlled by the entry speed and the vessel geometry. For shallow water impact, the presence of the ground may further influence the hydrodynamic loading, by constraining the water motion beneath the impacting hull. Here, we present a theoretical and experimental framework to investigate shallow water entry, in the context of the two-dimensional water impact of a wedge. Wagner theory is extended to describe the finiteness of the water column, and the resulting mixed boundary value problem is analytically solved to determine the velocity potential, free surface elevation, and pressure field. To complement and validate the semi-analytical scheme, experiments are performed using particle image velocimetry, by systematically varying the height of the water column. The velocity data are then utilized to reconstruct the pressure field in the fluid and infer the hydrodynamic loading on the wedge. Experimental observations confirm the accuracy of the proposed modeling framework, which is successful in anticipating the role of the bottom wall on the physics of the impact. Our results indicate that the pressure distribution is controlled by the water height, whereby we observe an increase in the pressure at the keel, accompanied by a decrease in the pile-up, as the water column becomes thinner. The results of this study are expected to offer insight into the design of marine vessels and constitute a solid basis for understanding the role of fluid confinement in shallow water entry.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35K20 Initial-boundary value problems for second-order parabolic equations
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76B07 Free-surface potential flows for incompressible inviscid fluids
76-05 Experimental work for problems pertaining to fluid mechanics

Software:

PIVlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrate S (2013) Hull slamming. Appl Mech Rev 64:060803 · doi:10.1115/1.4023571
[2] Faltinsen OM (2006) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York · doi:10.1017/CBO9780511546068
[3] Hughes K, Vignjevic R, Campbell J, De Vuyst T, Djordjevic N, Papagiannis L (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int J Impact Eng 61:48-63 · doi:10.1016/j.ijimpeng.2013.05.001
[4] Von Karman T (1929) The impact on seaplane floats, during landing. NACA-TN-321
[5] Wagner H (1932) Uber stoss-und gleitvorgange an der oberflache von flussigkeite. Z Angew Math Mech (ZAMM) 12(4):193-215 · JFM 58.0882.02 · doi:10.1002/zamm.19320120402
[6] Faltinsen OM (1997) The effect of hydroelasticity on ship slamming. Philos Trans R Soc Lond Ser A 355(1724):575-591 · Zbl 0881.73101 · doi:10.1098/rsta.1997.0026
[7] Korobkin AA, Guéret R, Malenica Š (2006) Hydroelastic coupling of beam finite element model with Wagner theory of water impact. J Fluids Struct 22(4):493-504 · doi:10.1016/j.jfluidstructs.2006.01.001
[8] Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solids Struct 46(10):2011-2035 · Zbl 1215.74018 · doi:10.1016/j.ijsolstr.2008.04.019
[9] Khabakhpasheva TI, Korobkin AA (2013) Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models. J Fluids Struct 36:32-49 · doi:10.1016/j.jfluidstructs.2012.08.004
[10] Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluids Struct 57:229-246 · doi:10.1016/j.jfluidstructs.2015.06.017
[11] Toyama Y (1993) Two-dimensional water impact of unsymmetrical bodies. J Soc Nav Archit Jpn 173:285-291 · doi:10.2534/jjasnaoe1968.1993.285
[12] Xu L, Troesch AW, Vorus WS (1998) Asymmetric vessel impact and planing hydrodynamics. J Ship Res 42(3):187-198
[13] Korobkin AA, Malenica S (2005) Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water. In: 20th International Workshop on Water Waves and Floating Bodies, Longyearbyen, May, pp 21(1)-21(4)
[14] Semenov YA, Iafrati A (2006) On the nonlinear water entry problem of asymmetric wedges. J Fluid Mech 547:231-256 · Zbl 1082.76013 · doi:10.1017/S0022112005007329
[15] Zhao R, Faltinsen O (1993) Water entry of two-dimensional bodies. J Fluid Mech 246:593-612 · Zbl 0766.76008 · doi:10.1017/S002211209300028X
[16] Battistin D, Iafrati A (2003) Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J Fluid Struct 17(5):643-664 · doi:10.1016/S0889-9746(03)00010-0
[17] Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803-822 · Zbl 1088.76056 · doi:10.1016/j.jcp.2005.09.004
[18] Stenius I, Rosén A, Kuttenkeuler J (2011) Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Eng 38(2):371-381 · doi:10.1016/j.oceaneng.2010.11.010
[19] Wang S, Soares CG (2013) Slam induced loads on bow-flared sections with various roll angles. Ocean Eng 67:45-57 · doi:10.1016/j.oceaneng.2013.04.009
[20] De Rosis A, Falcucci G, Porfiri M, Ubertini F, Ubertini S (2014) Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput Struct 138:24-35 · doi:10.1016/j.compstruc.2014.02.007
[21] Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluids Struct 55:484-500 · doi:10.1016/j.jfluidstructs.2015.03.018
[22] Chuang SL (1966) Slamming of rigid wedge-shaped bodies with various deadrise angles. Technical Report DTMB-2268
[23] Judge C, Troesch A, Perlin M (2004) Initial water impact of a wedge at vertical and oblique angles. J Eng Math 48(3-4):279-303 · Zbl 1041.76505 · doi:10.1023/B:engi.0000018187.33001.e1
[24] Peseux B, Gornet L, Donguy B (2005) Hydrodynamic impact: numerical and experimental investigations. J Fluids Struct 21(3):277-303 · doi:10.1016/j.jfluidstructs.2005.04.011
[25] Tveitnes T, Fairlie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35(14):1463-1478 · doi:10.1016/j.oceaneng.2008.06.012
[26] El Malki Alaoui A, Nême A, Tassin A, Jacques N (2012) Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl Ocean Res 37:183-197 · doi:10.1016/j.apor.2012.05.007
[27] Stenius I, Rosén A, Battley M, Allen T (2013) Experimental hydroelastic characterization of slamming loaded marine panels. Ocean Eng 74:1-15 · doi:10.1016/j.oceaneng.2013.09.007
[28] Batyaev EA, Khabakhpasheva TI (2013) Initial stage of the inclined impact of a smooth body on a thin fluid layer. Fluid Dyn 48(2):211-222 · Zbl 1269.76021 · doi:10.1134/S0015462813020087
[29] Korobkin AA (1995) Impact of two bodies one of which is covered by a thin layer of liquid. J Fluid Mech 300:43-58 · Zbl 0848.76006 · doi:10.1017/S0022112095003594
[30] Korobkin AA (1999) Shallow-water impact problems. J Eng Math 35(1-2):233-250 · Zbl 0941.76010 · doi:10.1023/A:1004382117949
[31] Howison SD, Ockendon JR, Oliver JM (2002) Deep- and shallow-water slamming at small and zero deadrise angles. J Eng Math 42(3-4):373-388 · Zbl 1009.76007 · doi:10.1023/A:1016177401868
[32] Oliver JM (2002) Water entry and related problems. PhD Thesis, University of Oxford
[33] Duffy DG (2008) Mixed boundary value problems. Chapman & Hall/CRC Press, Boca Raton · Zbl 1160.35005 · doi:10.1201/9781420010947
[34] Korobkin AA (1996) Advances in marine hydrodynamics. Mechanics Publications, Southampton · Zbl 0908.76005
[35] Korobkin AA (2004) Analytical models of water impact. Eur J Appl Math 15(6):821-838 · Zbl 1105.76012 · doi:10.1017/S0956792504005765
[36] Tung RC, Jana A, Raman A (2008) Hydrodynamic loading of microcantilevers oscillating near rigid walls. J Appl Phys 104(11):114905 · doi:10.1063/1.3033499
[37] Grimaldi E, Porfiri M, Soria L (2012) Finite amplitude vibrations of a sharp-edged beam immersed in a viscous fluid near a solid surface. J Appl Phys 112(10):104907 · doi:10.1063/1.4765029
[38] Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors Actuators A 214:187-218 · doi:10.1016/j.sna.2014.04.025
[39] Ermanyuk EV, Ohkusu M (2005) Impact of a disk on shallow water. J Fluids Struct 20(3):345-357 · doi:10.1016/j.jfluidstructs.2004.10.002
[40] Ermanyuk EV, Gavrilov NV (2011) Experimental study of disk impact onto shallow water. J Appl Mech Tech Phys 52(6):889-895 · doi:10.1134/S002189441106006X
[41] Bukreev VI, Gusev AV (1996) Gravity waves generated by a body falling onto shallow water. J Appl Mech Tech Phys 37(2):224-231 · doi:10.1007/BF02382428
[42] Kang HD, Oh SH, Kwon SH (2009) An experimental study on shallow water effect in slamming. J Ocean Eng Technol 23(1):60-66
[43] Nila A, Vanlanduit S, Vepa S, Van Paepegem W (2013) A PIV-based method for estimating slamming loads during water entry of rigid bodies. Meas Sci Technol 24(4):045303 · doi:10.1088/0957-0233/24/4/045303
[44] Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630 · doi:10.1007/s00348-013-1630-3
[45] Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56(2):1-17 · doi:10.1007/s00348-015-1895-9
[46] Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluids Struct 59:85-102 · doi:10.1016/j.jfluidstructs.2015.08.013
[47] Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213-222 · doi:10.1016/j.oceaneng.2014.12.004
[48] Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2):027,103 · doi:10.1063/1.4907745
[49] Panciroli R, Porfiri M (2015) Analysis of hydroelastic slamming through particle image velocimetry. J Sound Vib 347:63-78 · doi:10.1016/j.jsv.2015.02.007
[50] Huera-Huarte FJ, Jeon D, Gharib M (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38(11):1347-1355 · doi:10.1016/j.oceaneng.2011.06.004
[51] Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, Burlington · Zbl 1208.65001
[52] Cooke JC (1970) The solution of some integral equations and their connection with dual integral equations and series. Glasgow Math J 11(01):9-20 · Zbl 0193.39901 · doi:10.1017/S0017089500000793
[53] Singh BM, Moodie TB (1981) Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech 38(1-2):99-109 · Zbl 0442.73102 · doi:10.1007/BF01351465
[54] Roberts JC, Boyle MP, Wienhold PD, White GJ (2002) Buckling, collapse and failure analysis of FRP sandwich panels. Composites B 33(4):315-324 · doi:10.1016/S1359-8368(02)00017-3
[55] Thielicke W, Stamhuis EJ (2014) PIVlab—Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB (Version: 1.32). 10.6084/m9.figshare.1092508
[56] Thielicke W, Stamhuis EJ (2014) PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2(1):e30
[57] Scarano F, Riethmuller M (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513-523 · doi:10.1007/s003480050318
[58] Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051-S060
[59] Nobach H, Damaschke N, Tropea C (2005) High-precision sub-pixel interpolation in particle image velocimetry image processing. Exp Fluids 39(2):299-304 · doi:10.1007/s00348-005-0999-z
[60] Rayleigh Lord (1911) On the motion of solid bodies through viscous liquid. Lond Edinb Dublin Philos Mag J Sci 21(126):697-711 · JFM 42.0812.01 · doi:10.1080/14786440608637084
[61] Baur T, Köngeter J. (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd International workshop on PIV’99, Santa Barbara, pp 101-106
[62] Mei X, Liu Y, Yue DK (1999) On the water impact of general two-dimensional sections. Appl Ocean Res 21(1):1-15 · doi:10.1016/S0141-1187(98)00034-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.