×

Adaptive scheduling algorithm for media-optimized traffic management in software defined networks. (English) Zbl 1352.68030

Summary: Multi-policy resource management have been considered as an efficient methodology for delivering ready-to-use media-optimized applications in Software-Defined Networks (SDNs). Prioritized flow scheduling ensures high-speed communication in SDNs under large-scale distribution, heterogeneity of network resources, and exponential distribution of the flows granularity. The effectiveness of priority-based approaches depends usually on the control mechanism of the resource management. In this paper we improve the resource utilization by developing a novel adaptive scheduling strategy. We came with an effecting scheduling strategy to determine what resource to be allocated to a set of flows keeping their priority, increasing the average utilization of resources and, most importantly, establishing a virtual circuit for a specific flow over a network. Our theoretical remarks and extensive simulation results show that the proposed scheduling strategies can achieve the described goals.

MSC:

68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
68M14 Distributed systems

Software:

G-Hadoop; nox; CUBIC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jacobson V (1988) Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, vol 18. ACM, New York, pp 314-329
[2] Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queueing algorithm. ACM SIGCOMM Comput Commun Rev 19(4):1-12 · doi:10.1145/75247.75248
[3] McKenney PE (1990) Stochastic fairness queueing. In: Proceedings of Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, IEEE INFOCOM’90. The Multiple Facets of Integration, pp 733-740 · Zbl 0957.60062
[4] Floyd S, Jacobson V (1993) Random early detection gateways for congestion avoidance. IEEE/ACM Trans Netw 1(4):397-413 · doi:10.1109/90.251892
[5] Feng W-c, Shin KG, Kandlur DD, Saha D (2002) The BLUE active queue management algorithms. IEEE/ACM Trans Netw 10(4):513-528 · doi:10.1109/TNET.2002.801399
[6] Floyd S (1994) TCP and explicit congestion notification. ACM SIGCOMM Comput Commun Rev 24(5):8-23 · doi:10.1145/205511.205512
[7] Katabi D, Handley M, Rohrs C (2002) Congestion control for high bandwidth delay product networks. ACM SIGCOMM Comput Commun Rev 32(4):89-102 · doi:10.1145/964725.633035
[8] Tai CH, Zhu J, Dukkipati N (2008) Making large scale deployment of RCP practical for real networks. In: The 27th Conference on Computer Communications INFOCOM 2008, IEEE, pp 2180-2188
[9] Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S, Sridharan M (2010) Data center TCP (DCTCP). ACM SIGCOMM Comput Commun Rev 40(4):63-74 · doi:10.1145/1851275.1851192
[10] Hong CY, Caesar M, Godfrey P (2012) Finishing flows quickly with preemptive scheduling. ACM SIGCOMM Comput Commun Rev 42(4):127-138 · doi:10.1145/2377677.2377710
[11] Nichols K, Jacobson V (2012) Controlling queue delay. Commun ACM 55(7):42-50 · doi:10.1145/2209249.2209264
[12] Alizadeh M, Yang S, Sharif M, Katti S, McKeown N, Prabhakar B, Shenker S (2013) pFabric: Minimal near-optimal datacenter transport. In: Proceedings of the ACM SIGCOMM 2013, pp 435-446
[13] Wang L, Khan SU, Chen D, Koodziej J, Ranjan R, Zomaya A (2013) Energy-aware parallel task scheduling in a cluster. Future Gener Comput Syst 29(7):1661-1670 · Zbl 1348.90648 · doi:10.1016/j.future.2013.02.010
[14] Sivaraman A, Winstein K, Subramanian S, Balakrishnan H (2013) No silver bullet: extending SDN to the data plane. In: Twelfth ACM Workshop on Hot Topics in Networks (HotNets-XII). College Park
[15] Ha S, Rhee I (2008) CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper Syst Rev 42(5):64-74 · doi:10.1145/1400097.1400105
[16] Song KTJ, Zhang Q, Sridharan M (2006) Compound TCP: a scalable and TCP-friendly congestion control for high-speed networks. In: Proceedings of PFLDnet 2006
[17] Ma Y, Wang L (2013) Task-tree based large-scale Mosaicking for remote sensed imageries with dynamic DAG scheduling. IEEE Transactions on Parallel and Distributed Systems (Published Online 20 Nov 2013) · Zbl 0253.90016
[18] Rahman M, Ranjan R, Buyya R, Benatallah B (2011) A taxonomy and survey on autonomic management of applications in grid computing environments. Concurrency and computation: practice and experience 23(16):1990-2019 · doi:10.1002/cpe.1734
[19] Casado M, Freedman MJ, Pettit J, Luo J, McKeown N, Shenker S (2007) Ethane: taking control of the enterprise. ACM SIGCOMM Comput Commun Rev 37(4):1-12 · doi:10.1145/1282427.1282382
[20] Hui P, Koponen T, Hui P, Koponen T (2012) Software defined networking (Dagstuhl seminar 12363). Dagstuhl Rep 2(9):95-108
[21] Crowcroft J, Fidler M, Nahrstedt K, Steinmetz R (2013) Is SDN the de-constraining constraint of the future internet? ACM SIGCOMM Comput Commun Rev 43(5):13-18 · doi:10.1145/2541468.2541472
[22] Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. ACM, New York, pp 267-280
[23] Greenberg A, Lahiri P, Maltz DA, Patel P, Sengupta S (2008) Towards a next generation data center architecture: scalability and commoditization. In: Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow. ACM, New York, pp 57-62
[24] Hwang FK (1972) Rearrangeability of multi-connection three-stage Clos networks. Networks 2(4):301-306 · Zbl 0253.90016 · doi:10.1002/net.3230020403
[25] Cisco Systems. Cisco’s Massively Scalable Data Center (2013). http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/MSDC/1.0/MSDC_AAG_1.pdf. Accessed November 14 2013
[26] Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, Chen D (2013) G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener Comput Syst 29(3):739-750 · doi:10.1016/j.future.2012.09.001
[27] Hedlund Brad Starting a new journey with dell force10 (2011). http://bradhedlund.com/2011/10/05/starting-a-new-journey-with-dell-force10/. Accessed November 14th 2013
[28] Chen M, Jin H, Wen Y, Leung VCM (2013) Enabling technologies for future data center networking: a primer. IEEE Netw 27(4):8-15. doi:10.1109/MNET.2013.6574659 · doi:10.1109/MNET.2013.6574659
[29] Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (IMC ’10). ACM, New York, pp 267-280. doi:10.1145/1879141.1879175 · Zbl 0253.90016
[30] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69-74 · doi:10.1145/1355734.1355746
[31] Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S (2008) NOX: towards an operating system for networks. ACM SIGCOMM Comput Commun Rev 38(3):105-110 · doi:10.1145/1384609.1384625
[32] Curtis A, Mogul J, Tourrilhes J, Yalagandula P, Sharma P, Banerjee S (2011) DevoFlow: Scaling flow management for high-performance networks. ACM SIGCOMM Comput Commun Rev 41(4):254-265 · doi:10.1145/2043164.2018466
[33] Caesar M, Caldwell D, Feamster N, Rexford J, Shaikh A, van der Merwe J (2005) Design and implementation of a routing control platform. In: Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, vol 2. USENIX Association, pp 15-28
[34] Greenberg A, Hjalmtysson G, Maltz DA, Myers A, Rexford J, Xie G, Yan H, Zhan J, Zhang H (2005) A clean slate 4D approach to network control and management. ACM SIGCOMM Comput Commun Rev 35(5):41-54 · doi:10.1145/1096536.1096541
[35] Casado M, Garfinkel T, Aditya A, Freedman MJ, Boneh D, McKeown N, Shenker S (2006) SANE: A protection architecture for enterprise networks. In: USENIX Security Symposium
[36] Rothenberg CE, Nascimento MR, Salvador MR, Araujo CN, Cunha de Lucena S, Raszuk R (2012) Revisiting routing control platforms with the eyes and muscles of software-defined networking. In: Proceedings of the first workshop on Hot topics in software defined networks. ACM, New York, pp 13-18
[37] Mocanu M, Craciun A (2012) Monitoring watershed parameters through Software services. In: 2012 Third International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), pp 287-292
[38] Mocanu M, Vacariu L, Drobot R, Muste M (2013) Information-centric systems for supporting decision-making in watershed resource development. In: 2013 19th International Conference onControl Systems and Computer Science (CSCS), pp 611-616
[39] Ke BY, Tien PL, Hsiao YL (2013) Parallel prioritized flow scheduling for software defined data center network. In: 2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR), pp 217-218
[40] Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A. Hedera (2010) Dynamic flow scheduling for data center networks. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10. USENIX Association, Berkeley, CA, USA, pp 19-19
[41] Ferguson AD, Guha A, Liang C, Fonseca R, Krishnamurthi S (August 2013) Participatory networking: an API for application control of SDNs. SIGCOMM Comput Commun Rev 43(4):327-338
[42] Sen S, Shue D, Ihm S, Freedman MJ (2013) Scalable, optimal flow routing in datacenters via local link balancing. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT ’13. ACM, New York, pp 151-162
[43] Jain S, Kumar A, Mandal S,Ong J, Poutievski L, Singh A, Venkata S, Wanderer J, Zhou J, Zhu M et al. (2013) B4: Experience with a globally-deployed software defined WAN. In: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, New York, pp 3-14
[44] Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, McKeown N (2010) ElasticTree: saving energy in data center networks. NSDI 3:19-21
[45] Ng C-H, Boon-He S (2002) Queueing modelling fundamentals. Wiley, Chichester
[46] Serbanescu C (1998) Stochastic differential equations and unitary processes. Bull Math Soc Sc Math Roumanie Tome 41 89(3):311-322 · Zbl 0957.60063
[47] Gardiner CW (1985) Handbook of stochastic methods. Springer, Berlin
[48] Serbanescu C (1998) Noncommutative Markov processes as stochastic equations’ solutions. Bull Math Soc Sc Math Roumanie Tome 41 89(3):219-228 · Zbl 0957.60062
[49] Izakian H, Abraham A, Snášel V (2009) Performance comparison of six efficient pure heuristics for scheduling meta-tasks on heterogeneous distributed environments. Neural Netw World 19(6):695-710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.