×

zbMATH — the first resource for mathematics

Dynamic output feedback regulation for a class of nonlinear systems. (English) Zbl 0792.93048
Summary: Results are presented on the problem of regulating nonlinear systems by output feedback, using Lyapunov-based techniques. In all the cases considered here, we assume that the part of the state which is not measured enters linearly in the equations. Sufficient conditions for the global stabilization of the observer states via dynamic output feedback are obtained, assuming that such stabilization is possible using state feedback. Systems satisfying these conditions include a natural class of bilinear systems and systems which reduce to linear observable systems when the nonlinear terms in the measured states are removed. Some simple examples are included to illustrate our approach.

MSC:
93C10 Nonlinear systems in control theory
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Z. Artstein, Stabilization with relaxed controls,Nonlinear Anal,7 (1983), 1163-1173. · Zbl 0525.93053 · doi:10.1016/0362-546X(83)90049-4
[2] R. W. Brockett,Finite Dimensional Linear Systems, Wiley, New York, 1970. · Zbl 0216.27401
[3] W. A. Cebuhar, R.W., Hirschorn, and J.-B. Pomet, Some results on dynamic output feedback regulation of nonlinear systems,Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, 1991, pp. 1811-1812. · Zbl 0792.93048
[4] B. A. Francis, The linear multivariable regulator problem,SIAM J. Control Optim.,15 (1977), 486-505. · Zbl 0382.93025 · doi:10.1137/0315033
[5] J.-P. Gauthier and I. Kupka, A Separation Principle for Bilinear Systems with Dissipative Drift, LAGEP Internal Report, University of Lyon 1, 1991. · Zbl 0778.93102
[6] A. Isidori,Nonlinear Control Systems, 2nd edn., Springer-Verlag, New York, 1989. · Zbl 0693.93046
[7] A. Isidori and C. I. Byrnes, Output regulation of nonlinear systems,IEEE Trans. Automat. Control,35 (1990), 131-140. · Zbl 0704.93034 · doi:10.1109/9.45168
[8] V. Jurdjevic and J. P. Quinn, Controllability and stability,J. Differential Equations,28 (1978), 381-389. · Zbl 0417.93012 · doi:10.1016/0022-0396(78)90135-3
[9] I. Kanellakopoulos, P. V. Kokotovi?, and A. S. Morse, A toolkit for nonlinear feedback design,Systems Control. Lett.,18 (1992), 83-92. · Zbl 0743.93039 · doi:10.1016/0167-6911(92)90012-H
[10] J. P. LaSalle, Stability theory for ordinary differential equations,J. Differential Equations,4 (1968), 57-65. · Zbl 0159.12002 · doi:10.1016/0022-0396(68)90048-X
[11] R. Marino and P. Tomei, Global adaptive observers and output feedback stabilization for a class of nonlinear systems, inFoundations of Adaptive Control (P. V. Kokotovi?, ed.), pp. 455-493, Lecture Notes in Control and Information Sciences, Vol. 160, Springer-Verlag, Berlin, 1991. · Zbl 0787.93013
[12] R. Marino and P. Tomei, Output feedback control of a class of nonlinear systems,Proceedings of the 1992 IF AC Symposium on Nonlinear Control Systems (NOL COS), Bordeaux, Pergamon, Oxford, 1993. · Zbl 0799.93023
[13] H. Nijmeier and A. J. van der Schaft,Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.
[14] L. Praly, Lyapunov design of a dynamic output feedback for systems linear in their unmeasured state components,Proceedings of the 1992 IFAC Symposium on Nonlinear Control Systems (NOL COS), Bordeaux, Pergamon, Oxford, 1993.
[15] L. Praly, G. Bastin, J.-B. Pomet, and Z. P. Jiang, Adaptive stabilization of nonlinear systems, inFoundations of Adaptive Control (P. V. Kokotovi?, ed.), pp. 347-433, Lecture Notes in Control and Information Sciences, Vol. 160, Springer-Verlag, Berlin, 1991. · Zbl 0787.93083
[16] E. D. Sontag, Conditions for abstract nonlinear regulation,Inform. and Control,51 (1981), 105-127. · Zbl 0544.93058 · doi:10.1016/S0019-9958(81)90217-5
[17] E. D. Sontag, A ?universal? construction of Artstein’s theorem on nonlinear stabilization,Systems Control. Lett.,13 (1989), 117-123. · Zbl 0684.93063 · doi:10.1016/0167-6911(89)90028-5
[18] J. Tsinias, A generalization of Vidyasagar’s theorem on stabilizability using state detection,Systems Control Lett.,17 (1991), 37-42. · Zbl 0753.93063 · doi:10.1016/0167-6911(91)90096-W
[19] J. Tsinias and N. Kalouptsidis, Output feedback stabilization,IEEE Trans. Automat. Control,35 (1990), 951-954. · Zbl 0723.93054 · doi:10.1109/9.58511
[20] M. Vidyasagar, On the stabilization of nonlinear systems using state detection,IEEE Trans. Automat. Control,25 (1980), 504-507. · Zbl 0429.93046 · doi:10.1109/TAC.1980.1102376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.