Bhattacharyya, Tirthankar; Košir, Tomaž; Plestenjak, Bor Right-definite multiparameter Sturm-Liouville problems with eigenparameter-dependent boundary conditions. (English) Zbl 1022.34009 Proc. Edinb. Math. Soc., II. Ser. 45, No. 3, 565-578 (2002). The authors study the distribution of eigenvalues of the multiparameter Sturm-Liouville system defined by \[ -y_{j}^{\prime \prime }+q_{j}y_{j}=\left( \sum_{j=1}^{n}\lambda _{k}r_{jk}\right) y_{j},\quad j=1,\dots n, \] with eigenparameter-dependent boundary conditions defined by \[ ( a_{j0}\lambda _{j}+b_{j0})y_j(0)= (c_{j0}\lambda _{j}+d_{j0}) y_j'(0), \] where \(q_{i}\), \(r_{jk}\in C^{1}[0,1]\) and \(r_{jk}\) satisfy the Minkowsky condition \(\int_{0}^{1}r_{jk}(x)|y(x)|^{2} dx\leq 0\) for \(j\neq k\) while \(\sum_{k=1}^{n} \int_{0}^{1}r_{jk}(x)|y(x)|^{2} dx>0\) for \(j=1, 2,\dots , n\). This gives rise to a right-definite regular Sturm-Liouville system whose spectrum, made of the vectors \((\lambda_{1}, \lambda _{2}, \dots , \lambda_{n})\in \mathbb{R}^{n}\), is discrete. Using the oscillation properties of the eigenfunctions, the intersection of hypersurfaces of eigenvalues are examined in the cases when either one or both boundary conditions depend on the eigenvalue parameter. Reviewer: Amin Boumenir (Carrollton) MSC: 34B08 Parameter dependent boundary value problems for ordinary differential equations 34B24 Sturm-Liouville theory Keywords:Sturm-Liouville; right-definite; multiparameter eigenvalue problem PDF BibTeX XML Cite \textit{T. Bhattacharyya} et al., Proc. Edinb. Math. Soc., II. Ser. 45, No. 3, 565--578 (2002; Zbl 1022.34009) Full Text: DOI