×

zbMATH — the first resource for mathematics

Ladder limit for correlators of Wilson loops. (English) Zbl 1391.81156
Summary: We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed. In addition, we explore some analytic continuation of a parameter \(\gamma\) that characterizes the internal space separation. This enables a ladder limit in which ladder resummation and string theory computations precisely agree in the strong coupling limit. Finally, we find a critical value of \(\gamma\) for which the correlator is supersymmetric and ladder diagrams can be exactly resummed for any value of the coupling constant.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena, J., Wilson loops in large N field theories, Phys. Rev. Lett., 80, 4859, (1998) · Zbl 0947.81128
[2] Rey, S-J; Yee, J-T, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J., C 22, 379, (2001) · Zbl 1072.81555
[3] D. J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, hep-th/9805129.
[4] Berenstein, DE; Corrado, R.; Fischler, W.; Maldacena, JM, The operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev., D 59, 105023, (1999)
[5] K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, hep-th/9904149. · Zbl 0987.81540
[6] Zarembo, K., String breaking from ladder diagrams in SYM theory, JHEP, 03, 042, (2001)
[7] P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].
[8] Kim, H.; Park, DK; Tamarian, S.; Muller-Kirsten, HJW, Gross-ooguri phase transition at zero and finite temperature: two circular Wilson loop case, JHEP, 03, 003, (2001)
[9] Plefka, J.; Staudacher, M., Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP, 09, 031, (2001)
[10] Drukker, N.; Fiol, B., On the integrability of Wilson loops in ads_{5} × S\^{5}: some periodic ansatze, JHEP, 01, 056, (2006)
[11] Burrington, BA; Pando Zayas, LA, Phase transitions in Wilson loop correlator from integrability in global AdS, Int. J. Mod. Phys., A 27, 1250001, (2012) · Zbl 1247.81352
[12] Dekel, A.; Klose, T., Correlation function of circular Wilson loops at strong coupling, JHEP, 11, 117, (2013)
[13] C. Ahn, Two circular Wilson loops and marginal deformations, hep-th/0606073 [INSPIRE].
[14] Armoni, A.; Piai, M.; Teimouri, A., Correlators of circular Wilson loops from holography, Phys. Rev., D 88, (2013)
[15] L. Griguolo, S. Mori, F. Nieri and D. Seminara, Correlators of Hopf Wilson loops in the AdS/CFT correspondence, Phys. Rev.D 86 (2012) 046006 [arXiv:1203.3413] [INSPIRE].
[16] Liu, C-Y, Wilson surface correlator in the ads_{7}/CF T_{6} correspondence, JHEP, 07, 009, (2013) · Zbl 1342.83397
[17] Ziama, S., Holographic calculations of euclidean Wilson loop correlator in Euclidean anti-de Sitter space, JHEP, 04, 020, (2015) · Zbl 1388.81612
[18] Giataganas, D.; Irges, N., On the holographic width of flux tubes, JHEP, 05, 105, (2015) · Zbl 1388.83249
[19] M. Preti, D. Trancanelli, and E. Vescovi, Quark-antiquark potential in defect conformal field theory, [arXiv:1708.04884]. · Zbl 1383.81252
[20] Aguilera-Damia, J.; etal., Strings in bubbling geometries and dual Wilson loop correlators, JHEP, 12, 109, (2017) · Zbl 1383.83144
[21] S. Giombi and S. Komatsu, Exact correlators on the Wilson loop in\( \mathcal{N}=4 \)SYM: localization, defect CFT and integrability, JHEP05 (2018) 109 [arXiv:1802.05201] [INSPIRE]. · Zbl 1391.81162
[22] E. Sysoeva, Wilson loop and its correlators in the limit of large coupling constant, arXiv:1803.00649 [INSPIRE]. · Zbl 1388.81890
[23] Correa, D.; Henn, J.; Maldacena, J.; Sever, A., The cusp anomalous dimension at three loops and beyond, JHEP, 05, 098, (2012) · Zbl 1348.81442
[24] Bykov, D.; Zarembo, K., Ladders for Wilson loops beyond leading order, JHEP, 09, 057, (2012) · Zbl 1397.81076
[25] Henn, JM; Huber, T., Systematics of the cusp anomalous dimension, JHEP, 11, 058, (2012) · Zbl 1397.81077
[26] D. Marmiroli, Resumming planar diagrams for the N = 6 ABJM cusped Wilson loop in light-cone gauge, arXiv:1211.4859 [INSPIRE].
[27] J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in\( \mathcal{N}=4 \)super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP09 (2013) 147 [arXiv:1304.6418] [INSPIRE]. · Zbl 1388.83249
[28] Bonini, M.; Griguolo, L.; Preti, M.; Seminara, D., Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP, 05, 180, (2016) · Zbl 1388.81250
[29] Kim, M.; Kiryu, N.; Komatsu, S.; Nishimura, T., Structure constants of defect changing operators on the 1/2 BPS Wilson loop, JHEP, 12, 055, (2017) · Zbl 1383.81238
[30] A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in N = 4 SYM: cusps in the ladder limit, arXiv:1802.04237 [INSPIRE].
[31] Drukker, N.; Gross, DJ; Ooguri, H., Wilson loops and minimal surfaces, Phys. Rev., D 60, 125006, (1999)
[32] J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in supersymmetric Yang-Mills theory, Nucl. Phys. B582 (2000) 155 [hep-th/0003055]. · Zbl 0984.81154
[33] N. Drukker and D.J. Gross, An exact prediction of N = 4 supersymmetric Yang-Mills theory for string theory, J, Math. Phys.42 (2001) 2896 [hep-th/0010274]. · Zbl 1036.81041
[34] Pestun, V., Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys., 313, 71, (2012) · Zbl 1257.81056
[35] M. Preti, Studies on Wilson loops, correlators and localization in supersymmetric quantum field theories, Ph.D. thesis, Parma University, Parma, Italy (2016).
[36] Giombi, S.; Pestun, V., Correlators of local operators and 1/8 BPS Wilson loops on S\^{2} from 2d YM and matrix models, JHEP, 10, 033, (2010) · Zbl 1291.81249
[37] A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP08 (2009) 061 [arXiv:0905.1943] [INSPIRE].
[38] Giombi, S.; Pestun, V.; Ricci, R., Notes on supersymmetric Wilson loops on a two-sphere, JHEP, 07, 088, (2010) · Zbl 1290.81066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.