×

zbMATH — the first resource for mathematics

Noncommutative \(U(1)\) gauge theory from a worldline perspective. (English) Zbl 1388.81264
Summary: We study pure noncommutative \(U(1)\) gauge theory representing its one-loop effective action in terms of a phase space worldline path integral. We write the quadratic action using the background field method to keep explicit gauge invariance, and then employ the worldline formalism to write the one-loop effective action, singling out UV-divergent parts and finite (planar and non-planar) parts, and study renormalization properties of the theory. This amounts to employ worldline Feynman rules for the phase space path integral, that nicely incorporate the Fadeev-Popov ghost contribution and efficiently separate planar and non-planar contributions. We also show that the effective action calculation is independent of the choice of the worldline Green’s function, that corresponds to a particular way of factoring out a particle zero-mode. This allows to employ homogeneous string-inspired Feynman rules that greatly simplify the computation.
MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
83C65 Methods of noncommutative geometry in general relativity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Douglas, MR; Nekrasov, NA, Noncommutative field theory, Rev. Mod. Phys., 73, 977, (2001) · Zbl 1205.81126
[2] Szabo, RJ, Quantum field theory on noncommutative spaces, Phys. Rept., 378, 207, (2003) · Zbl 1042.81581
[3] Minwalla, S.; Raamsdonk, M.; Seiberg, N., Noncommutative perturbative dynamics, JHEP, 02, 020, (2000) · Zbl 0959.81108
[4] Langmann, E.; Szabo, RJ, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett., B 533, 168, (2002) · Zbl 0994.81116
[5] Grosse, H.; Wulkenhaar, R., Renormalization of ϕ\^{4} theory on noncommutative R\^{4} in the matrix base, Commun. Math. Phys., 256, 305, (2005) · Zbl 1075.82005
[6] Disertori, M.; Gurau, R.; Magnen, J.; Rivasseau, V., Vanishing of β-function of non commutative \(ϕ\)_{4}\^{4} theory to all orders, Phys. Lett., B 649, 95, (2007) · Zbl 1248.81253
[7] Goursac, A.; Wallet, J-C; Wulkenhaar, R., Noncommutative induced gauge theory, Eur. Phys. J., C 51, 977, (2007) · Zbl 1189.81215
[8] Grosse, H.; Wohlgenannt, M., Induced gauge theory on a noncommutative space, Eur. Phys. J., C 52, 435, (2007) · Zbl 1189.81217
[9] Blaschke, DN; Grosse, H.; Schweda, M., Non-commutative U(1) gauge theory on \(R\)_{\(Θ\)}\^{4} with oscillator term and BRST symmetry, Europhys. Lett., 79, 61002, (2007)
[10] Schubert, C., Perturbative quantum field theory in the string inspired formalism, Phys. Rept., 355, 73, (2001) · Zbl 0988.81108
[11] Bonezzi, R.; Corradini, O.; Franchino Vinas, SA; Pisani, PAG, Worldline approach to noncommutative field theory, J. Phys., A 45, 405401, (2012) · Zbl 1255.81219
[12] Viñas, SF; Pisani, P., Worldline approach to the Grosse-Wulkenhaar model, JHEP, 11, 087, (2014)
[13] Vassilevich, DV, Heat kernel, effective action and anomalies in noncommutative theories, JHEP, 08, 085, (2005)
[14] A. Connes, Noncommutative geometry, Academic Press, San Diego, U.S.A. (1994). · Zbl 0818.46076
[15] G. Landi, An Introduction to noncommutative spaces and their geometry, Lect. Notes Phys. Monographs51, Springer, Berlin, Germany (1997).
[16] Bastianelli, F.; Corradini, O.; Zirotti, A., BRST treatment of zero modes for the worldline formalism in curved space, JHEP, 01, 023, (2004) · Zbl 1243.81211
[17] Martin, CP; Sánchez-Ruiz, D., The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R\^{4}, Phys. Rev. Lett., 83, 476, (1999) · Zbl 0958.81199
[18] Krajewski, T.; Wulkenhaar, R., Perturbative quantum gauge fields on the noncommutative torus, Int. J. Mod. Phys., A 15, 1011, (2000) · Zbl 0963.81055
[19] Sheikh-Jabbari, MM, Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus, JHEP, 06, 015, (1999) · Zbl 0961.81123
[20] M. Hayakawa, Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on R\^{4}, hep-th/9912167 [INSPIRE].
[21] Matusis, A.; Susskind, L.; Toumbas, N., The IR/UV connection in the noncommutative gauge theories, JHEP, 12, 002, (2000) · Zbl 0990.81549
[22] Ruiz, FR, Gauge fixing independence of IR divergences in noncommutative U(1), perturbative tachyonic instabilities and supersymmetry, Phys. Lett., B 502, 274, (2001) · Zbl 0977.81156
[23] F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press, Cambridge, U.K. (2006). · Zbl 1120.81057
[24] Chamseddine, AH; Felder, G.; Fröhlich, J., Gravity in noncommutative geometry, Commun. Math. Phys., 155, 205, (1993) · Zbl 0818.58008
[25] Aschieri, P.; Blohmann, C.; Dimitrijević, M.; Meyer, F.; Schupp, P.; Wess, J., A gravity theory on noncommutative spaces, Class. Quant. Grav., 22, 3511, (2005) · Zbl 1129.83011
[26] Bastianelli, F.; Bonezzi, R., One-loop quantum gravity from a worldline viewpoint, JHEP, 07, 016, (2013) · Zbl 1342.83075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.