×

Another look at Bayesian analysis of AMMI models for genotype-environment data. (English) Zbl 1303.62079

Summary: Linear-bilinear models are frequently used to analyze two-way data such as genotype-by-environment data. A well-known example of this class of models is the additive main effects and multiplicative interaction effects model (AMMI). We propose a new Bayesian treatment of such models offering a proper way to deal with the major problem of overparameterization. The rationale is to ignore the issue at the prior level and apply an appropriate processing at the posterior level to be able to arrive at easily interpretable inferences. Compared to previous attempts, this new strategy has the great advantage of being directly implementable in standard software packages devoted to Bayesian statistics such as WinBUGS/OpenBUGS/JAGS. The method is assessed using simulated datasets and a real dataset from plant breeding. We discuss the benefits of a Bayesian perspective to the analysis of genotype-by-environment interactions, focusing on practical questions related to general and local adaptation and stability of genotypes. We also suggest a new solution to the estimation of the risk of a genotype not exceeding a given threshold.

MSC:

62P12 Applications of statistics to environmental and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, E., Walczak, B., Vervaet, C., Risha, P. G., and Massart, D. L. (2002), ”Principal Component Analysis of Dissolution Data with Missing Elements,” International Journal of Pharmaceutics, 234, 169–178. · doi:10.1016/S0378-5173(01)00966-8
[2] Chikuse, Y. (2003), Statistics on Special Manifolds, New York: Springer. · Zbl 1026.62051
[3] Cornelius, P., and Crossa, J. (1999), ”Prediction Assessment of Shrinkage Estimators of Multiplicative Models for Multi-environment Cultivar Trials,” Crop Science, 39, 998–1009. · doi:10.2135/cropsci1999.0011183X003900040007x
[4] Cornelius, P., Crossa, J., and Seyedsadr, M. (1996), ”Statistical Tests and Estimators of Multiplicative Models for Genotype by Environment Interaction,” in Genotype by Environment Interaction, eds. M. S. Kang and H. G. Gauch, Boca Raton, FL: CRC Press, pp. 199–234.
[5] Crossa, J., Perez-Elizalde, S., Jarquin, D., Miguel Cotes, J., Viele, K., Liu, G., and Cornelius, P. (2011), ”Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model,” Crop Science, 51, 1468–1469. · doi:10.2135/cropsci2010.06.0343
[6] Denis, J. B., and Gower, J. C. (1994), ”Asymptotic Covariances for the Parameters of Biadditive Models,” Utilitas Mathematica, 46, 193–205. · Zbl 0814.62072
[7] – (1996), ”Asymptotic Confidence Regions for Biadditive Models: Interpreting Genotype-Environment Interactions,” Applied Statistics, 45 (4), 479–493. · Zbl 04534916 · doi:10.2307/2986069
[8] Dias, S., and Krzanowski, W. (2003), ”Model Selection and Cross Validation in Additive Main Effect and Multiplicative Interaction Models,” Crop Science, 43 (3), 865–873. · doi:10.2135/cropsci2003.8650
[9] Edwards, J. W., and Jannink, J. L. (2006), ”Bayesian Modeling of Heterogeneous Error and Genotype X Environment Interaction Variances,” Crop Science, 46, 820–833. · doi:10.2135/cropsci2005.0164
[10] Eskridge, K., and Mumm, R. (1992), ”Choosing Plant Cultivars Based on the Probability of Outperforming a Check,” Theoretical and Applied Genetics, 84, 494–500.
[11] Gabriel, K. R., and Zamir, S. (1979), ”Lower Rank Approximation of Matrices by Least Squares with Any Choice of Weights,” Technometrics, 21 (4), 236–246. · Zbl 0471.62004 · doi:10.1080/00401706.1979.10489819
[12] Gauch, H. (1990), ”Using Interaction to Improve Yield Estimates,” in Genotype by Environment Interaction, ed. M. S. Kang, Boca Raton, FL: CRC Press, pp. 141–150.
[13] Gauch, H., and Zobel, R. (1990), ”Imputing Missing Yield Trial Data,” Theoretical and Applied Genetics, 79, 753–761. · doi:10.1007/BF00224240
[14] – (1996), ”AMMI Analysis of Yield Trials,” in Genotype by environment interaction, eds. M. S. Kang, and H. G. Gauch, Boca Raton, FL: CRC Press, pp. 141–150.
[15] Gelman, A. (2006), ”Prior Distributions for Variance Parameters in Hierarchical Models,” Bayesian Analysis, 3, 515–533. · Zbl 1331.62139
[16] Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer Series in Statistics (2nd ed.). · Zbl 1273.62005
[17] Hoff, P. D. (2007), ”Model Averaging and Dimension Selection for the Singular Value Decomposition,” Journal of the American Statistical Association, 102 (478), 674–685. · Zbl 1172.62318 · doi:10.1198/016214506000001310
[18] – (2009), ”Simulation of the Matrix Bingham–von Mises–Fisher Distribution, with Applications to Multivariate and Relational Data,” Journal of Computational and Graphical Statistics, 18 (2), 438–456. · doi:10.1198/jcgs.2009.07177
[19] – (2012), ”rstiefel: Random Orthonormal Matrix Generation on the Stiefel Manifold,” available at http://CRAN.R-project.org/package=rstiefel , R Package Version 0.9.
[20] Jolliffe, I. T. (2002), Principal Component Analysis, New York: Springer. · Zbl 1011.62064
[21] Josse, J., and Denis, J. (2012), ”Inferring Biadditive Models Within the Bayesian Paradigm,” Tech. Rep., INRA, MIA.
[22] Josse, J., and Husson, F. (2011), ”Multiple Imputation in PCA,” Advances in Data Analysis and Classification, 5 (3), 231–246. · Zbl 1274.62409 · doi:10.1007/s11634-011-0086-7
[23] – (2012), ”Selecting the Number of Components in PCA Using Cross-Validation Approximations,” Computational Statistics & Data Analysis, 56 (6), 1869–1879. · Zbl 1243.62082 · doi:10.1016/j.csda.2011.11.012
[24] – (2013), ”Handling Missing Values in Exploratory Multivariate Data Analysis Methods,” Journal de la Société Française de Statistique, 153 (2), 79–99. · Zbl 1316.62006
[25] Khatri, C. G., and Mardia, K. V. (1977), ”The von Mises–Fisher Matrix Distribution in Orientation Statistics,” Journal of the Royal Statistical Society, Series B, 39 (1), 95–106. · Zbl 0356.62044
[26] Kiers, H. A. L. (1997), ”Weighted Least Squares Fitting Using Ordinary Least Squares Algorithms,” Psychometrika, 62 (2), 251–266. · Zbl 0873.62058 · doi:10.1007/BF02295279
[27] Mandel, J. (1969), ”The Partitioning of Interaction in Analysis of Variance,” Journal of Research of the National Bureau of Standards. B, Mathematical Sciences, 73, 309–328. · Zbl 0195.17404 · doi:10.6028/jres.073B.031
[28] Martyn, P. (2003), ”Jags: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling,” in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria.
[29] Moreno-Gonzalez, J., Crossa, J., and Cornelius, P. L. (2003), ”Additive Main Effects and Multiplicative Interaction Model: II. Theory on Shrinkage Factors for Predicting Cell Means,” Crop Science, 43, 1976–1982. · doi:10.2135/cropsci2003.1976
[30] Nelder, J. A. (1994), ”The Statistics of Linear Models: Back to Basics,” Statistics and Computing, 4 (4), 221–234. · doi:10.1007/BF00156745
[31] Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011), ”A General Bayesian Estimation Method of Linear-Bilinear Models Applied to Plant Breeding Trials with Genotype X Environment Interaction,” Journal of Agricultural, Biological, and Environmental Statistics, 17 (1), 15–37. · Zbl 1302.62275 · doi:10.1007/s13253-011-0063-9
[32] Piepho, H. (1996), ”A Simplified Procedure for Comparing the Stability of Cropping Systems,” Biometrics, 52, 315–320. · Zbl 0881.62131 · doi:10.2307/2533168
[33] – (1997), ”Analyzing Genotype-Environment Data by Mixed Models with Multiplicative Effects,” Biometrics, 53, 761–766. · Zbl 0885.62123 · doi:10.2307/2533976
[34] – (1998), ”Empirical Best Linear Unbiased Prediction in Cultivar Trials Using Factor Analytic Variance-Covariance Structures,” Theoretical and Applied Genetics, 97, 195–201. · doi:10.1007/s001220050885
[35] R Core Team (2013), ”R: A Language and Environment for Statistical Computing,” R Foundation for Statistical Computing, Vienna, Austria, available at http://www.R-project.org/ .
[36] Robinson, G. K. (1991), ”That BLUP Is a Good Thing: The Estimation of Random Effects,” Statistical Science, 6 (1), 15–51. · Zbl 0955.62500 · doi:10.1214/ss/1177011926
[37] Royo, C., Rodriguez, A., and Romagosa, I. (1993), ”Differential Adaptation of Complete and Substitute Triticale,” Plant Breeding, 111, 113–119. · doi:10.1111/j.1439-0523.1993.tb00616.x
[38] Smidl, V., and Quinn, A. (2007), ”On Bayesian Principal Component Analysis,” Computational Statistics & Data Analysis, 51, 4101–4123. · Zbl 1162.62372 · doi:10.1016/j.csda.2007.01.011
[39] Smith, A., Cullis, B., and Thompson, R. (2001), ”Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend,” Biometrics, 57 (4), 1138–1147. · Zbl 1209.62366 · doi:10.1111/j.0006-341X.2001.01138.x
[40] Theobald, C. M., Talbot, M., and Nabugoomu, F. (2002), ”A Bayesian Approach to Regional and Local-Area Prediction from Crop Variety Trials,” Journal of Agricultural, Biological, and Environmental Statistics, 7 (3), 403–419. · doi:10.1198/108571102230
[41] Viele, K., and Srinivasan, C. (2000), ”Parsimonious Estimation of Multiplicative Interaction in Analysis of Variance Using Kullback–Leibler Information,” Journal of Statistical Planning and Inference, 84, 201–219. · Zbl 0960.62069 · doi:10.1016/S0378-3758(99)00151-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.