×

An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming. (English) Zbl 1309.74046

Summary: The paper presents a numerical procedure for kinematic limit analysis of Mindlin plate governed by von Mises criterion. The cell-based smoothed discrete shear gap method (CS-DSG3) is combined with a second-order cone optimization programming (SOCP) for determining the upper bound limit load of the Mindlin plates. The limit analysis problem of Mindlin plates is formulated by minimizing the dissipation power subjected to a set of constraints of boundary conditions and unitary external work. This minimization problem is then transformed into an explicit form suitable for the solution using the SOCP. The numerical results of some benchmark problems show that the proposal procedure can provide the reliable upper bound collapse multipliers for the Mindlin plates.

MSC:

74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
90C90 Applications of mathematical programming
90C22 Semidefinite programming

Software:

Matlab; Mosek
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hodge, P. G., Limit Analysis of Rotationally Symmetric Plates and Shells (1963), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0129.18203
[2] Save, M. A.; Massonnet, C. E., Plastic Analysis and Design of Plates, Shells and Disks (1972), North-Holland: North-Holland Amsterdam · Zbl 0232.73071
[3] Zyczkowski, M., Combined Loadings in the Theory of Plasticity (1981), Polish Scientific, PWN and Nijhoff · Zbl 0497.73036
[4] Xu, B. Y.; Liu, X. S., Plastic Limit Analysis of Structures (1985), China Architecture & Building Press: China Architecture & Building Press Beijing
[5] Lubliner, Jacob, Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[6] Yu, M. H.; Ma, G. W.; Li, J. C., Structural Plasticity Limit, Shakedown and Dynamic Plastic Analyses of Structures (2009), Springer: Springer New York
[7] Hodge, P. G.; Belytschko, T., Numerical methods for the limit analysis of plates, Appl. Mech., 35, 796-802 (1968) · Zbl 0172.52003
[8] Nguyen, H. D., Direct limit analysis via rigid-plastic finite elements, Comput. Methods Appl. Mech. Engrg., 8, 81-116 (1976) · Zbl 0333.73032
[9] Christiansen, E.; Kortanek, K. O., Computation of the collapse state in limit analysis using the LP affine scaling algorithm, J. Comput. Appl. Math., 34, 47-63 (1991) · Zbl 0713.73035
[10] Zouain, N.; Herskovits, J.; Borges, L. A.; Feijo, R. A., An iterative algorithm for limit analysis with nonlinear yield functions, Internat. J. Solids Structures, 30, 1397-1417 (1993) · Zbl 0773.73032
[11] Liu, Y. H.; Zen, Z. Z.; Xu, B. Y., A numerical method for plastic limit analysis of 3-D structures, Internat. J. Solids Structures, 32, 1645-1658 (1995) · Zbl 0877.73077
[12] Capsoni, A.; Corradi, L., A finite element formulation of the rigid-plastic limit analysis problem, Internat. J. Numer. Methods Engrg., 40, 2063-2086 (1997) · Zbl 0886.73060
[13] Christiansen, E.; Andersen, K. D., Computation of collapse states with von Mises type yield condition, Internat. J. Numer. Methods Engrg., 46, 1185-1202 (1999) · Zbl 0951.74060
[14] Corradi, L.; Panzeri, N., A triangular finite element for sequential limit analysis of shells, Adv. Eng. Softw., 35, 633-643 (2004) · Zbl 1116.74427
[15] Le, C. V.; Nguyen-Xuan, H.; Askes, H.; Bordas, S.; Rabczuk, T.; Nguyen-Vinh, H., A cell-based smoothed finite element method for kinematic limit analysis, Internat. J. Numer. Methods Engrg., 83, 1651-1674 (2010) · Zbl 1202.74177
[16] Sloan, S. W., A steepest edge active set algorithm for solving sparse linear programming problems, Internat. J. Numer. Methods Engrg., 26, 2671-2685 (1988) · Zbl 0678.65041
[17] Andersen, K. D.; Christiansen, E., Limit analysis with the dual affine scaling algorithm, J. Comput. Appl. Math., 59, 233-243 (1995) · Zbl 0831.73080
[18] Pastor, J.; Thai, T. H.; Francescato, P., Interior point optimization and limit analysis: an application, Comm. Numer. Methods Engrg., 19, 779-785 (2003) · Zbl 1154.74392
[19] Zouain, N.; Herskovits, J.; Borges, L. A.; Feijoo, R. A., An iterative algorithm for limit analysis with nonlinear yield functions, Internat. J. Solids Structures, 30, 1397-1417 (1993) · Zbl 0773.73032
[20] Lyamin, A. V.; Sloan, S. W., Upper bound analysis using linear finite elements and non-linear programming, Int. J. Numer. Anal. Methods Geomech., 26, 181-216 (2002) · Zbl 1112.74527
[21] Andersen, K. D., An efficient Newton barrier method for minimizing a sum of Euclidean norms, SIAM J. Optim., 6, 74-95 (1996) · Zbl 0842.90105
[22] Andersen, K. D.; Christiansen, E.; Overton, M. L., Computing limit loads by minimizing a sum of norms, SIAM J. Sci. Comput., 19, 1046-1062 (1998) · Zbl 0924.73074
[23] Krabbenhoft, K.; Damkilde, L., A general non-linear optimization algorithm for lower bound limit analysis, Internat. J. Numer. Methods Engrg., 56, 165-184 (2003) · Zbl 1116.74404
[24] Tin-Loi, F.; Ngo, N. S., Performance of the \(p\)-version finite element method for limit analysis, Int. J. Mech. Sci., 45, 1149-1166 (2003) · Zbl 1063.74103
[25] Andersen, K. D.; Christiansen, E.; Overton, M. L., An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Sci. Comput., 22, 243-262 (2001) · Zbl 0966.65053
[26] Andersen, E. D.; Roos, C.; Terlaky, T., On implementing a primal-dual interior-point method for conic quadratic programming, Math. Program., 95, 249-277 (2003) · Zbl 1030.90137
[28] Krabbenhoft, K.; Lyamin, A. V.; Sloan, S. W., Formulation and solution of some plasticity problems as conic programs, Internat. J. Solids Structures, 44, 1533-1549 (2006) · Zbl 1119.74035
[29] Makrodimopoulos, A.; Martin, C. M., Upper bound limit analysis using simplex strain elements and second-order cone programming, Int. J. Numer. Anal. Methods Geomech., 31, 825-865 (2007) · Zbl 1196.74014
[30] Christiansen, E.; Larsen, S., Computations in limit analysis for plastic plates, Internat. J. Numer. Methods Engrg., 19, 169-184 (1983) · Zbl 0498.73079
[31] Turco, Emilio; Caracciolo, Paola, Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements, Comput. Methods Appl. Mech. Engrg., 10, 691-706 (2000) · Zbl 1007.74080
[32] Corradi, L.; Vena, P., Limit analysis of orthotropic plates, Int. J. Plast., 19, 10, 1543-1566 (2003) · Zbl 1098.74670
[33] Corradi, L.; Panzeri, N., Post-collapse analysis of plates and shells based on a rigid-plastic version of the TRIC element, Comput. Methods Appl. Mech. Engrg., 192, 33-34, 3747-3775 (2003) · Zbl 1054.74725
[34] Tran, T. N.; Kreissig, R.; Staat, M., Probabilistic limit and shakedown analysis of thin plates and shells, Struct. Saf., 31, 1, 1-18 (2009)
[35] Le, C. V.; Gilbert, M.; Askes, H., Limit analysis of plates using the EFG method and second-order cone programming, Internat. J. Numer. Methods Engrg., 78, 1532-1552 (2009) · Zbl 1171.74466
[36] Le, C. V.; Askes, Harm; Gilbert, Matthew, Adaptive element-free Galerkin method applied to the limit analysis of plates, Comput. Methods Appl. Mech. Engrg., 199, 2487-2496 (2010) · Zbl 1231.74485
[37] Le, C. V.; Nguyen-Xuan, H.; Nguyen-Dang, H., Upper and lower bound limit analysis of plates using FEM and second-order cone programming, Comput. Struct., 88, 65-73 (2010)
[38] Zhou, Shutao; Liu, Yinghua; Chen, Shenshen, Upper bound limit analysis of plates utilizing the C1 natural element method, Comput. Mech. (2012) · Zbl 1312.74050
[39] Capsoni, A.; Corradi, L., Limit analysis of plates—a finite element formulation, Struct. Eng. Mech., 8, 325-341 (1999)
[40] Capsoni, A.; Vicente da Silva, M., A finite element formulation of Mindlin plates for limit analysis, Int. J. Numer. Methods Biomed. Eng., 27, 143-156 (2011) · Zbl 1429.74068
[41] Liu, G. R.; Trung, Nguyen Thoi, Smoothed Finite Element Methods (2010), CRC Press, Taylor and Francis Group: CRC Press, Taylor and Francis Group NewYork
[42] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[43] Liu, G. R.; Dai, K. Y.; Nguyen-Thoi, T., A smoothed finite element for mechanics problems, Comput. Mech., 39, 859-877 (2007) · Zbl 1169.74047
[44] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87, 14-26 (2009)
[45] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics, J. Sound Vib., 320, 1100-1130 (2009)
[46] Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Internat. J. Numer. Methods Engrg., 78, 324-353 (2009) · Zbl 1183.74299
[47] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method \(( \alpha\) FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput. Methods Appl. Mech. Engrg., 197, 3883-3897 (2008) · Zbl 1194.74433
[48] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel FEM by scaling the gradient of strains with factor \(\alpha (\alpha\) FEM), Comput. Mech., 43, 369-391 (2009) · Zbl 1162.74469
[49] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X., A novel Galerkin-like weakform and a superconvergent alpha finite element method \((S \alpha\) FEM) for mechanics problems using triangular meshes, J. Comput. Phys., 228, 4055-4087 (2009) · Zbl 1273.74542
[50] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., A variationally consistent \(\alpha\) FEM (VC \(\alpha\) FEM) for solid mechanics problems, Internat. J. Numer. Methods Engrg., 85, 461-497 (2011) · Zbl 1217.74126
[51] Liu, G. R.; Nguyen-Thoi, T.; Dai, K. Y.; Lam, K. Y., Theoretical aspects of the smoothed finite element method (SFEM), Internat. J. Numer. Methods Engrg., 71, 902-930 (2007) · Zbl 1194.74432
[52] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Dai, K. Y.; Lam, K. Y., On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM), Internat. J. Numer. Methods Engrg., 77, 1863-1869 (2009) · Zbl 1181.74137
[53] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., A theoretical study on NS/ES-FEM: properties, accuracy and convergence rates, Internat. J. Numer. Methods Engrg., 84, 1222-1256 (2010) · Zbl 1202.74180
[54] Nguyen-Xuan, H.; Nguyen-Thoi, T., A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates, Int. J. Numer. Methods Biomed. Eng., 25, 882-906 (2009) · Zbl 1172.74047
[55] Thai-Hoang, C.; Tran-Vinh, Loc; Tran-Trung, D.; Nguyen-Thoi, T.; Nguyen-Xuan, H., Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method, Appl. Math. Model., 36, 5657-5677 (2012) · Zbl 1254.74079
[56] Nguyen-Thoi, T.; Phung-Van, P.; Luong-Van, H.; Nguyen-Van, H.; Nguyen-Xuan, H., A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates, Comput. Mech., 50, 1, 65-81 (2013) · Zbl 1294.74064
[57] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 199, 471-489 (2009) · Zbl 1227.74083
[58] Nguyen-Xuan, H.; Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Tran, C., An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 18, 065015, 1-11 (2009)
[59] Phung-Van, P.; Nguyen-Thoi, T.; Le-Dinh, T.; Nguyen-Xuan, H., Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Smart Mater. Struct., 22, 095026 (2013)
[60] Liu, G. R.; Chen, L.; Nguyen-Thoi, T.; Zeng, K.; Zhang, G. Y., A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of cracks, Internat. J. Numer. Methods Engrg., 83, 11, 1466-1497 (2010) · Zbl 1202.74179
[61] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput. Mech., 45, 23-44 (2009) · Zbl 1398.74382
[62] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Engrg., 199, 3005-3027 (2010) · Zbl 1231.74432
[63] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput. Methods Appl. Mech. Engrg., 198, 3479-3498 (2009) · Zbl 1230.74193
[64] Tran, T. N.; Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Internat. J. Numer. Methods Engrg., 82, 917-938 (2010) · Zbl 1188.74073
[65] Nguyen-Thoi, T.; Phung-Van, P.; Nguyen-Xuan, H.; Thai-Hoang, C., A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg., 91, 7, 705-741 (2012) · Zbl 1253.74111
[66] Bletzinger, K. U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking free triangular and rectangular shell finite elements, Comput. Struct., 75, 321-334 (2000)
[67] Makrodimopoulos, A.; Martin, C. M., Upper bound limit analysis using discontinuous quadratic displacement fields, Comm. Numer. Methods Engrg., 24, 911-927 (2008) · Zbl 1156.74009
[68] Tessler, A.; Hughes, T. J.R., A three-node mindlin plate element with improved transverse shear, Comput. Methods Appl. Mech. Engrg., 50, 71-101 (1985) · Zbl 0562.73069
[69] Fox, E. N., Limit analysis for plates: exact solution for a clamped square plate of isotropic homoheneous material obeying square yield criterion and loaded by uniform pressure, Phil. Trans. R. Soc. A, 277, 121-155 (1974) · Zbl 0285.73016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.