zbMATH — the first resource for mathematics

Scattering of gravity waves by a periodically structured ridge of finite extent. (English) Zbl 1419.76090
Summary: We study the propagation of water waves over a ridge structured at the subwavelength scale using homogenization techniques able to account for its finite extent. The calculations are conducted in the time domain considering the full three-dimensional problem to capture the effects of the evanescent field in the water channel over the structured ridge and at its boundaries. This provides an effective two-dimensional wave equation which is a classical result but also non-intuitive transmission conditions between the region of the ridge and the surrounding regions of constant immersion depth. Numerical results provide evidence that the scattering properties of a structured ridge can be strongly influenced by the evanescent fields, a fact which is accurately captured by the homogenized model.
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI
[1] Berraquero, C.; Maurel, A.; Petitjeans, P.; Pagneux, V., Experimental realization of a water-wave metamaterial shifter, Phys. Rev. E, 88, 5, (2013)
[2] Bobinski, T.; Eddi, A.; Petitjeans, P.; Maurel, A.; Pagneux, V., Experimental demonstration of epsilon-near-zero water waves focusing, Appl. Phys. Lett., 107, 1, (2015)
[3] Cakoni, F.; Guzina, B.; Moskow, S., On the homogenization of a scalar scattering problem for highly oscillating anisotropic media, SIAM J. Math. Anal., 48, 4, 2532-2560, (2016) · Zbl 1343.35245
[4] Chen, H.; Yang, J.; Zi, J.; Chan, C. T., Transformation media for linear liquid surface waves, Europhys. Lett., 85, 2, 24004, (2009)
[5] Dupont, G.; Guenneau, S.; Kimmoun, O.; Molin, B.; Enoch, S., Cloaking a vertical cylinder via homogenization in the mild-slope equation, J. Fluid Mech., 796, (2016)
[6] Dupont, G.; Kimmoun, O.; Molin, B.; Guenneau, S.; Enoch, S., Numerical and experimental study of an invisibility carpet in a water channel, Phys. Rev. E, 91, 2, (2015)
[7] Farhat, M.; Enoch, S.; Guenneau, S.; Movchan, A. B., Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Phys. Rev. Lett., 101, 13, (2008)
[8] Guo, X.; Wang, B.; Mei, C. C.; Liu, H., Scattering of periodic surface waves by pile-group supported platform, Ocean Engng, 146, 46-58, (2017)
[9] Hu, X.; Chan, C. T., Refraction of water waves by periodic cylinder arrays, Phys. Rev. Lett., 95, 15, (2005)
[10] Lamb, H., Hydrodynamics, (1932), Cambridge University Press · JFM 26.0868.02
[11] Marigo, J.-J.; Maurel, A., Second order homogenization of subwavelength stratified media including finite size effect, SIAM J. Appl. Maths, 77, 2, 721-743, (2017) · Zbl 1375.35028
[12] Maurel, A.; Marigo, J.-J., Sensitivity of a dielectric layered structure on a scale below the periodicity: a fully local homogenized model, Phys. Rev. B, 98, 2, (2018)
[13] Maurel, A.; Marigo, J.-J.; Cobelli, P.; Petitjeans, P.; Pagneux, V., Revisiting the anisotropy of metamaterials for water waves, Phys. Rev. B, 96, 13, (2017)
[14] Mei, C. C.; Chan, I.-C.; Liu, P.; Huang, Z.; Zhang, W., Long waves through emergent coastal vegetation, J. Fluid Mech., 687, 461-491, (2011) · Zbl 1241.76153
[15] Newman, J. N., Cloaking a circular cylinder in water waves, Eur. J. Mech. (B/Fluids), 47, 145-150, (2014) · Zbl 1297.76034
[16] Porter, R., Cloaking in water waves, Handbook of Metamaterials Properties, 2, (2017), World Scientific Publishing Company
[17] Porter, R.
[18] Porter, R.; Newman, J. N., Cloaking of a vertical cylinder in waves using variable bathymetry, J. Fluid Mech., 750, 124-143, (2014)
[19] Rosales, R. R.; Papanicolaou, G. C., Gravity waves in a channel with a rough bottom, Stud. Appl. Maths, 68, 2, 89-102, (1983) · Zbl 0516.76018
[20] Sheinfux, H. H.; Kaminer, I.; Plotnik, Y.; Bartal, G.; Segev, M., Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory, Phys. Rev. Lett., 113, 24, (2014)
[21] Tuck, E. O., Some classical water-wave problems in variable depth, Waves on Water of Variable Depth, 64, 9-20, (1976), Springer
[22] Vinoles, V.
[23] Wang, B.; Guo, X.; Mei, C. C., Surface water waves over a shallow canopy, J. Fluid Mech., 768, 572-599, (2015) · Zbl 1337.76022
[24] Xu, J.; Jiang, X.; Fang, N.; Georget, E.; Abdeddaim, R.; Geffrin, J.-M.; Farhat, M.; Sabouroux, P.; Enoch, S.; Guenneau, S., Molding acoustic, electromagnetic and water waves with a single cloak, Sci. Rep., 5, (2015)
[25] Zareei, A.; Alam, M.-R., Cloaking in shallow-water waves via nonlinear medium transformation, J. Fluid Mech., 778, 273-287, (2015) · Zbl 1382.76037
[26] Zhang, C.; Chan, C.-T.; Hu, X., Broadband focusing and collimation of water waves by zero refractive index, Sci. Rep., 4, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.