Qin, Hong; Wu, Min; Peng, Junhao Universal admissibility of linear estimators in multivariate linear models with respect to a restricted parameter set. (Chinese. English summary) Zbl 0995.62003 Acta Math. Sci., Ser. A, Chin. Ed. 22, No. 3, 427-432 (2002). Summary: We give some characteristics of universal admissibility for linear estimators of regression coefficients under the multivariate linear models \((Y,X\Theta, V\otimes\Sigma)\) and the matrix loss function \((D(Y)-S\Theta)' (D(Y)-S\Theta)\), where the parameters \(\Theta\) and \(\Sigma\) vary in the restricted class \(H_N=\{(\Theta,\Sigma)\;:\;\Theta'X'NX \Theta\leq \Sigma\), \(N\geq 0\}\). Our results establish the relationships between the linear admissible estimators of \(S\Theta\) under the multivariate linear model \((Y,X \Theta,V \otimes\Sigma)\) and the linear admissible estimators of \(S\beta\) under the Gauss-Markov model \((Y,X\beta, \sigma^2V)\) and extend some results in the literature. Cited in 2 Documents MSC: 62C15 Admissibility in statistical decision theory 62H12 Estimation in multivariate analysis 62F30 Parametric inference under constraints 62J05 Linear regression; mixed models Keywords:universal admissibility; linear estimators PDF BibTeX XML Cite \textit{H. Qin} et al., Acta Math. Sci., Ser. A, Chin. Ed. 22, No. 3, 427--432 (2002; Zbl 0995.62003)